Estimating the bounds for the Lorenz family of chaotic systems

被引:111
作者
Li, DM
Lu, JA [1 ]
Wu, XQ
Chen, GR
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2004.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive a sharper upper bound for the Lorenz system, for all the positive values of its parameters a, b and c. Comparing with the best result existing in the current literature, we fill the gap of the estimate for 0 < b less than or equal to 1 and get rid of the singularity problem as b --> 1(+). Furthermore, for a > 1, 1 less than or equal to b < 2, we obtain a more precise estimate. Along the same line, we also provide estimates of bounds for a unified chaotic system for 0 less than or equal to alpha < (1)/(29). When alpha = 0, the estimate agrees precisely with the known result. Finally, the two-dimensional bounds with respect to x - z for the Chen system, Lu system and the unified system are established. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:529 / 534
页数:6
相关论文
共 14 条
[1]  
Chen G., 2003, DYNAMICAL ANAL CONTR
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]   LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM [J].
LEONOV, GA ;
BUNIN, AI ;
KOKSCH, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12) :649-656
[4]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[5]  
2
[6]   Synchronization of a unified chaotic system and the application in secure communication [J].
Lu, J ;
Wu, XQ ;
Lü, JH .
PHYSICS LETTERS A, 2002, 305 (06) :365-370
[7]   Controlling uncertain Lu system using linear feedback [J].
Lü, JH ;
Lu, JN .
CHAOS SOLITONS & FRACTALS, 2003, 17 (01) :127-133
[8]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[9]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661
[10]   An ultimate bound on the trajectories of the Lorenz system and its applications [J].
Pogromsky, AY ;
Santoboni, G ;
Nijmeijer, H .
NONLINEARITY, 2003, 16 (05) :1597-1605