An ultimate bound on the trajectories of the Lorenz system and its applications

被引:71
作者
Pogromsky, AY
Santoboni, G
Nijmeijer, H
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Cagliari, Dipartimento Fis, I-09042 Cagliari, Italy
关键词
D O I
10.1088/0951-7715/16/5/303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new bound on the trajectories of the Lorenz system is derived. This result is useful to show that the transverse stability of the origin in two Lorenz systems coupled in a drive-response manner is a necessary and sufficient condition for global asymptotic synchrony of the two systems, and to simplify the derivation of the upper bound to the Hausdorff dimension of the Lorenz attractor.
引用
收藏
页码:1597 / 1605
页数:9
相关论文
共 9 条
[1]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[2]  
EDEN A, 1989, RAIRO-MATH MODEL NUM, V23, P405
[3]   Optimal periodic orbits of chaotic systems occur at low period [J].
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW E, 1996, 54 (01) :328-337
[4]  
LEONOV G, 2001, ST PETERSB MATH J, V13, P1
[5]  
Leonov G. A, 1996, FrequencyDomain Methods for Nonlinear Analysis: Theory and Applications
[6]  
LJASHKO AS, 1994, THESIS ST PETERSBURG
[7]   On estimates of the Hausdorff dimension of invariant compact sets [J].
Pogromsky, AY ;
Nijmeijer, H .
NONLINEARITY, 2000, 13 (03) :927-945
[8]   Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions [J].
Swinnerton-Dyer, P .
PHYSICS LETTERS A, 2001, 281 (2-3) :161-167
[9]  
Tucker W, 2002, FOUND COMPUT MATH, V2, P53, DOI 10.1007/s102080010018