Optimal periodic orbits of chaotic systems occur at low period

被引:63
作者
Hunt, BR
Ott, E
机构
[1] UNIV MARYLAND,INST PLASMA RES,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,SYST RES INST,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[4] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 01期
关键词
D O I
10.1103/PhysRevE.54.328
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Invariant sets embedded in a chaotic attractor can generate time averages that differ from the average generated by typical orbits on the attractor. Motivated by two different topics (namely, controlling chaos and riddled basins of attraction), we consider the question of which invariant set yields the largest (optimal) value of an average of a given smooth function of the system state. We present numerical evidence and analysis that indicate that the optimal average is typically achieved by a low-period unstable periodic orbit embedded in the chaotic attractor. In particular, our results indicate that, if we consider that the function to be optimized depends on a parameter gamma, then the Lebesgue measure in gamma corresponding to optimal periodic orbits of period p or greater decreases exponentially with increasing p. Furthermore, the set of parameter values for which optimal orbits are nonperiodic typically has zero Lebesgue measure.
引用
收藏
页码:328 / 337
页数:10
相关论文
共 17 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
[Anonymous], COMMUNICATION
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[5]   ON THE SYMBOLIC DYNAMICS OF THE HENON MAP [J].
GRASSBERGER, P ;
KANTZ, H ;
MOENIG, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24) :5217-5230
[6]   Optimal periodic orbits of chaotic systems [J].
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2254-2257
[7]   SMOOTH DYNAMICS ON WEIERSTRASS NOWHERE DIFFERENTIABLE CURVES [J].
HUNT, BR ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (01) :141-154
[8]  
Kaplan J., 1979, Lect. Notes Math., P204
[9]  
LAI YC, IN PRESS PHYS REV LE
[10]   SCALING BEHAVIOR OF CHAOTIC SYSTEMS WITH RIDDLED BASINS [J].
OTT, E ;
SOMMERER, JC ;
ALEXANDER, JC ;
KAN, I ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1993, 71 (25) :4134-4137