On the nature of Fermi Golden Rule for open quantum systems

被引:17
作者
Derezinski, J
Jaksic, V
机构
[1] Univ Warsaw, Dept Math Methods Phys, PL-00682 Warsaw, Poland
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fermi Golden Rule; open quantum system; Markovian generators;
D O I
10.1023/B:JOSS.0000037208.99352.0a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a general class of models consisting of a small quantum system S interacting with a reservoir R. We compare three applications of 2nd order perturbation theory ( the Fermi Golden Rule) to the study of such models: ( 1) the van Hove ( weak coupling) limit for the dynamics reduced to S; ( 2) the Fermi Golden Rule applied to the Liouvillean - an argument that was used in recent papers on the return to equilibrium; ( 3) the Fermi Golden Rule applied to the so-called C-Liouvillean. These three applications lead to three Level Shift Operators. As our main result, we prove that if the reservoir R is thermal ( if it satisfies the KMS condition), then the Level Shift Operator obtained in ( 1) ( often called the Davies generator) and the Level Shift Operator constructed in ( 2) are connected by a similarity transformation. We also show that the Davies generator coincides with the Level Shift Operator obtained in ( 3) for a general R.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 1979, LECT VONNEUMANN ALGE
[2]   Return to equilibrium [J].
Bach, V ;
Fröhlich, J ;
Sigal, IM .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3985-4060
[3]  
Brattelli O., 1987, OPERATOR ALGEBRAS QU, V1
[4]  
BRATTELLI O, 1996, OPERATOR ALGEBRAS QU, V2
[5]  
Davies E.B., 1980, One-parameter semigroups
[6]   MARKOVIAN MASTER EQUATIONS [J].
DAVIES, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 39 (02) :91-110
[7]   MARKOVIAN MASTER EQUATIONS .2. [J].
DAVIES, EB .
MATHEMATISCHE ANNALEN, 1976, 219 (02) :147-158
[8]   Return to equilibrium for Pauli-Fierz systems [J].
Derezinski, J ;
Jaksic, V .
ANNALES HENRI POINCARE, 2003, 4 (04) :739-793
[9]   Spectral theory of Pauli-Fierz operators [J].
Derezinski, J ;
Jaksic, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :243-327
[10]  
DEREZINSKI J, IN PRESS REV MATH PH