Fugu and human sequence comparison identifies novel human genes and conserved non-coding sequences

被引:50
作者
Gilligan, P [1 ]
Brenner, S [1 ]
Venkatesh, B [1 ]
机构
[1] Natl Univ Singapore, Inst Mol & Cell Biol, Singapore 117609, Singapore
关键词
comparative genomics; conserved contiguity; orthologous gene;
D O I
10.1016/S0378-1119(02)00793-X
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The compact genome of the pufferfish, Fugu rubripes, has been proposed as a 'reference' genome to aid in annotating and analysing the human genome. We have annotated and compared 85 kb of Fugu sequence containing 17 genes with its homologous loci in the human draft genome and identified three 'novel' human genes that were missed or incompletely predicted by the previous gene prediction methods. Two of the novel genes contain zinc finger domains and are designated ZNF366 and ZNF367. They map to human chromosomes 5q13.2 and 9q22.32, respectively. The third novel gene, designated C9orf21, maps to chromosome 9q22.32. This gene is unique to vertebrates, and the protein encoded by it does not contain any known domains. We could not find human homologs for two Fugu genes, a novel chemokine gene and a kinase gene. These genes are either specific to teleosts or lost in the human lineage. The Fugu-human comparison identified several conserved non-coding sequences in the promoter and intronic regions. These sequences, conserved during 450 million years of vertebrate evolution, are likely to be involved in gene regulation. The 85 kb Fugu locus is dispersed over four human loci, occupying about 1.5 Mb. Contiguity is conserved in the human genome between six out of 16 Fugu gene pairs. These contiguous chromosomal segments should share a common evolutionary history dating back to the common ancestor of mammals and teleosts. We propose contiguity as strong evidence to identify orthologous genes in distant organisms. This study confirms the utility of the Fugu as a supplementary tool to uncover and confirm novel genes and putative gene regulatory regions in the human genome. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 33 条
[1]   Organization of the Fugu rubripes Hox clusters: Evidence for continuing evolution of vertebrate Hox complexes [J].
Aparicio, S ;
Hawker, K ;
Cottage, A ;
Mikawa, Y ;
Zuo, L ;
Venkatesh, B ;
Chen, E ;
Krumlauf, R ;
Brenner, S .
NATURE GENETICS, 1997, 16 (01) :79-83
[2]   DETECTING CONSERVED REGULATORY ELEMENTS WITH THE MODEL GENOME OF THE JAPANESE PUFFER FISH, FUGU RUBRIPES [J].
APARICIO, S ;
MORRISON, A ;
GOULD, A ;
GILTHORPE, J ;
CHAUDHURI, C ;
RIGBY, P ;
KRUMLAUF, R ;
BRENNER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1684-1688
[3]   Comparative genomics of the SOX9 region in human and Fugu rubripes:: Conservation of short regulatory sequence elements within large intergenic regions [J].
Bagheri-Fam, S ;
Ferraz, C ;
Demaille, J ;
Scherer, G ;
Pfeifer, D .
GENOMICS, 2001, 78 (1-2) :73-82
[4]   CHARACTERIZATION OF THE PUFFERFISH (FUGU) GENOME AS A COMPACT MODEL VERTEBRATE GENOME [J].
BRENNER, S ;
ELGAR, G ;
SANDFORD, R ;
MACRAE, A ;
VENKATESH, B ;
APARICIO, S .
NATURE, 1993, 366 (6452) :265-268
[5]   Conserved regulation of the lymphocyte-specific expression of lck in the Fugu and mammals [J].
Brenner, S ;
Venkatesh, B ;
Yap, WH ;
Chou, CF ;
Tay, A ;
Ponniah, S ;
Wang, Y ;
Tan, YH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2936-2941
[6]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[7]   Finding the genes in genomic DNA [J].
Burge, CB ;
Karlin, S .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (03) :346-354
[8]   Computational identification of promoters and first exons in the human genome [J].
Davuluri, RV ;
Grosse, I ;
Zhang, MQ .
NATURE GENETICS, 2001, 29 (04) :412-417
[9]   Human chromosome 19 and related regions in mouse: Conservative and lineage-specific evolution [J].
Dehal, P ;
Predki, P ;
Olsen, AS ;
Kobayashi, A ;
Folta, P ;
Lucas, S ;
Land, M ;
Terry, A ;
Zhou, CLE ;
Rash, S ;
Zhang, Q ;
Gordon, L ;
Kim, J ;
Elkin, C ;
Pollard, MJ ;
Richardson, P ;
Rokhsar, D ;
Uberbacher, E ;
Hawkins, T ;
Branscomb, E ;
Stubbs, L .
SCIENCE, 2001, 293 (5527) :104-111
[10]   Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome [J].
Gopal, S ;
Schroeder, M ;
Pieper, U ;
Sczyrba, A ;
Aytekin-Kurban, G ;
Bekiranov, S ;
Fajardo, JE ;
Eswar, N ;
Sanchez, R ;
Sali, A ;
Gaasterland, T .
NATURE GENETICS, 2001, 27 (03) :337-340