Effect of Mn and Cu Addition on Lithiation and SEI Formation on Model Anode Electrodes

被引:21
作者
Esbenshade, Jennifer L. [1 ]
Gewirth, Andrew A. [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
LITHIUM-ION BATTERIES; SPINEL LIMN2O4 ELECTRODE; NOBLE-METAL ELECTRODES; SURFACE-FILM FORMATION; EDGE PLANE GRAPHITE; UNDERPOTENTIAL DEPOSITION; CAPACITY LOSSES; SALT-SOLUTIONS; ELECTROCHEMICAL-BEHAVIOR; MANGANESE;
D O I
10.1149/2.009404jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of addition of Mn2+ to the electrolyte on the lithiation of a model battery anode was studied using voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Cyclic voltammetry of a Au anode showed that the presence of one equivalent monolayer of Mn2+ in the electrolyte reduces the battery capacity by as much as 48%, a result which is recapitulated in SEM images of the anode surface after five cycles which show that the presence of Mn2+ blocks lithiation of the anode. AES demonstrates the presence or lack of Mn on the surface. EQCM analysis demonstrates greater initial mass gain on the anode with increasing concentration of Mn2+ in the electrolyte while MALDI-TOF MS shows no observable differences in the solid electrolyte interface (SEI) between the electrolyte with or without Mn2+. The addition of Cu2+ to the electrolyte exhibits an effect similar to Mn2+ addition. (C) 2014 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A513 / A518
页数:6
相关论文
共 30 条
[1]   Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J].
Amatucci, GG ;
Schmutz, CN ;
Blyr, A ;
Sigala, C ;
Gozdz, AS ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF POWER SOURCES, 1997, 69 (1-2) :11-25
[2]   The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS [J].
Aurbach, D ;
Moshkovich, M ;
Cohen, Y ;
Schechter, A .
LANGMUIR, 1999, 15 (08) :2947-2960
[4]   Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C [J].
Cho, In Haeng ;
Kim, Sung-Soo ;
Shin, Soon Cheol ;
Choi, Nam-Soon .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (11) :A168-A172
[5]   Capacity Fade Model for Spinel LiMn2O4 Electrode [J].
Dai, Yiling ;
Cai, Long ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) :A182-A190
[6]  
Doh CH, 2009, B KOREAN CHEM SOC, V30, P2429
[7]   IMPROVED CAPACITY RETENTION IN RECHARGEABLE 4V LITHIUM LITHIUM MANGANESE OXIDE (SPINEL) CELLS [J].
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
SOLID STATE IONICS, 1994, 69 (01) :59-67
[8]   DETAILED UNDERPOTENTIAL DEPOSITION OF COPPER ON GOLD(111) IN AQUEOUS-SOLUTIONS [J].
HACHIYA, T ;
HONBO, H ;
ITAYA, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 315 (1-2) :275-291
[9]   Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 v Li/LixMn2O4 rechargeable cells [J].
Jang, DH ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (10) :3342-3348
[10]   Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils [J].
Jang, DH ;
Shin, YJ ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (07) :2204-2211