Comparative Assessment of Substrates and Activity Based Probes as Tools for Non-Invasive Optical Imaging of Cysteine Protease Activity

被引:68
作者
Blum, Galia
Weimer, Robby M.
Edgington, Laura E.
Adams, Walter
Bogyo, Matthew
机构
[1] Department of Pathology, Stanford University School of Medicine, Stanford, CA
[2] Department of Biomedical Imaging, Genentech Inc., South San Francisco, CA
[3] Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
[4] School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem
来源
PLOS ONE | 2009年 / 4卷 / 07期
关键词
D O I
10.1371/journal.pone.0006374
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in the field of non-invasive optical imaging have included the development of contrast agents that report on the activity of enzymatic targets associated with disease pathology. In particular, proteases have proven to be ideal targets for development of optical sensors for cancer. Recently developed contrast agents for protease activity include both small peptides and large polymer-based quenched fluorescent substrates as well as fluorescently labeled activity based probes (ABPs). While substrates produce a fluorescent signal as a result of processing by a protease, ABPs are retained at the site of proteolysis due to formation of a permanent covalent bond with the active site catalytic residue. Both methods have potential advantages and disadvantages yet a careful comparison of substrates and ABPs has not been performed. Here we present the results of a direct comparison of commercially available protease substrates with several recently described fluorescent ABPs in a mouse model of cancer. The results demonstrate that fluorescent ABPs show more rapid and selective uptake into tumors as well as overall brighter signals compared to substrate probes. These data suggest that the lack of signal amplification for an ABP is offset by the increased kinetics of tissue uptake and prolonged retention of the probes once bound to a protease target. Furthermore, fluorescent ABPs can be used as imaging reagents with similar or better results as the commercially available protease substrates.
引用
收藏
页数:10
相关论文
共 15 条
[1]   Enzyme activity - it's all about image [J].
Baruch, A ;
Jeffery, DA ;
Bogyo, M .
TRENDS IN CELL BIOLOGY, 2004, 14 (01) :29-35
[2]   Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes [J].
Berger, Alicia B. ;
Witte, Martin D. ;
Denault, Jean-Bernard ;
Sadaghiani, Amir Masoud ;
Sexton, Kelly M. B. ;
Salvesen, Guy S. ;
Bogyo, Matthew .
MOLECULAR CELL, 2006, 23 (04) :509-521
[3]   Dynamic imaging of protease activity with fluorescently quenched activity-based probes [J].
Blum, G ;
Mullins, SR ;
Keren, K ;
Fonovic, M ;
Jedeszko, C ;
Rice, MJ ;
Sloane, BF ;
Bogyo, M .
NATURE CHEMICAL BIOLOGY, 2005, 1 (04) :203-209
[4]  
Blum G, 2008, CURR OPIN DRUG DISC, V11, P708
[5]   Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes [J].
Blum, Galia ;
von Degenfeld, Georges ;
Merchant, Milton J. ;
Blau, Helen M. ;
Bogyo, Matthew .
NATURE CHEMICAL BIOLOGY, 2007, 3 (10) :668-677
[6]   Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis [J].
Bullok, Kristin E. ;
Maxwell, Dustin ;
Kesarwala, Aparna H. ;
Gammon, Seth ;
Prior, Julie L. ;
Snow, Margaret ;
Stanley, Sam ;
Piwnica-Worms, David .
BIOCHEMISTRY, 2007, 46 (13) :4055-4065
[7]   Chemical approaches for functionally probing the proteome [J].
Greenbaum, D ;
Baruch, A ;
Hayrapetian, L ;
Darula, Z ;
Burlingame, A ;
Medzihradszky, KF ;
Bogyo, M .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (01) :60-68
[8]   Tumor imaging by means of proteolytic activation of cell-penetrating peptides [J].
Jiang, T ;
Olson, ES ;
Nguyen, QT ;
Roy, M ;
Jennings, PA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (51) :17867-17872
[9]   Activity-based probes that target diverse cysteine protease families [J].
Kato, D ;
Boatright, KM ;
Berger, AB ;
Nazif, T ;
Blum, G ;
Ryan, C ;
Chehade, KAH ;
Salvesen, GS ;
Bogyo, M .
NATURE CHEMICAL BIOLOGY, 2005, 1 (01) :33-38
[10]   Protease degradomics:: A new challenge for proteomics [J].
López-Otin, C ;
Overall, CM .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (07) :509-519