This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm(2). A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PUT material are presented.