Chaos without nonlinear dynamics

被引:41
作者
Corron, Ned J. [1 ]
Hayes, Scott T. [1 ]
Pethel, Shawn D. [1 ]
Blakely, Jonathan N. [1 ]
机构
[1] USA, RECOM, Redstone Arsenal, AL 35898 USA
关键词
D O I
10.1103/PhysRevLett.97.024101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system.
引用
收藏
页数:4
相关论文
共 19 条
[1]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[2]  
Blahut R.E., 1990, DIGITAL TRANSMISSION
[3]   Low-frequency switching in a transistor amplifier [J].
Carroll, TL .
PHYSICAL REVIEW E, 2003, 67 (04) :7
[4]   Effects of UHF stimulus and negative feedback on nonlinear circuits [J].
de Moraes, RM ;
Anlage, SM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (04) :748-754
[5]   Topological analysis of chaotic dynamical systems [J].
Gilmore, R .
REVIEWS OF MODERN PHYSICS, 1998, 70 (04) :1455-1529
[6]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[7]   Chaos from linear systems: Implications for communicating with chaos, and the nature of determinism and randomness [J].
Hayes, Scott T. .
INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005), 2005, 23 :215-237
[8]  
HAYES ST, 2003, UNPUB APPL SYMBOLIC
[9]   Constructing dynamical systems with specified symbolic dynamics [J].
Hirata, Y ;
Judd, K .
CHAOS, 2005, 15 (03)
[10]   DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION [J].
KENNEL, MB ;
BROWN, R ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1992, 45 (06) :3403-3411