AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes

被引:175
作者
Reumann, S [1 ]
Ma, CL
Lemke, S
Babujee, L
机构
[1] Univ Gottingen, Albrecht von Haller Inst Plant Sci, Dept Plant Biochem, D-37077 Gottingen, Germany
[2] Univ Gottingen, Mol Biol Grad Program, GZMB, D-37077 Gottingen, Germany
关键词
D O I
10.1104/pp.104.043695
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxiomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.
引用
收藏
页码:2587 / 2608
页数:22
相关论文
共 121 条
[61]   Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization [J].
Kliebenstein, DJ ;
Monde, RA ;
Last, RL .
PLANT PHYSIOLOGY, 1998, 118 (02) :637-650
[62]   Molecular cloning of mouse glycolate oxidase -: High evolutionary conservation and presence of an iron-responsive element-like sequence in the mRNA [J].
Kohler, SA ;
Menotti, E ;
Kühn, LC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2401-2407
[63]   Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5 [J].
Kragler, F ;
Lametschwandtner, G ;
Christmann, J ;
Hartig, A ;
Harada, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13336-13341
[64]   Classification and expression analysis of Arabidopsis F-box-containing protein genes [J].
Kuroda, H ;
Takahashi, N ;
Shimada, H ;
Seki, M ;
Shinozaki, K ;
Matsui, M .
PLANT AND CELL PHYSIOLOGY, 2002, 43 (10) :1073-1085
[65]   The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it [J].
Lametschwandtner, G ;
Brocard, C ;
Fransen, M ;
Van Veldhoven, P ;
Berger, J ;
Hartig, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33635-33643
[66]  
LINDQVIST Y, 1989, J BIOL CHEM, V264, P3624
[67]   Purification and properties of betaine aldehyde dehydrogenase from Avena sativa [J].
Livingstone, JR ;
Maruo, T ;
Yoshida, I ;
Tarui, Y ;
Hirooka, K ;
Yamamoto, Y ;
Tsutui, N ;
Hirasawa, E .
JOURNAL OF PLANT RESEARCH, 2003, 116 (02) :133-140
[68]   Stress induces peroxisome biogenesis genes [J].
Lopez-Huertas, E ;
Charlton, WL ;
Johnson, B ;
Graham, IA ;
Baker, A .
EMBO JOURNAL, 2000, 19 (24) :6770-6777
[69]   Toward a functional catalog of the plant genome.: A survey of genes for lipid biosynthesis [J].
Mekhedov, S ;
de Ilárduya, OM ;
Ohlrogge, J .
PLANT PHYSIOLOGY, 2000, 122 (02) :389-401
[70]   OXIDATION OF NADH IN GLYOXYSOMES BY A MALATE-ASPARTATE SHUTTLE [J].
METTLER, IJ ;
BEEVERS, H .
PLANT PHYSIOLOGY, 1980, 66 (04) :555-560