Resonant excitations of the 't Hooft-Polyakov monopole -: art. no. 151802

被引:31
作者
Forgács, P [1 ]
Volkov, MS [1 ]
机构
[1] Univ Tours, CNRS, LMPT, UMR 6083, F-37200 Tours, France
关键词
D O I
10.1103/PhysRevLett.92.151802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spherically symmetric magnetic monopole in an SU(2) gauge theory coupled to a massless Higgs field is shown to possess an infinite number of resonances or quasinormal modes. These modes are eigenfunctions of the isospin 1 perturbation equations with complex eigenvalues, E-n=omega(n)-igamma(n), satisfying the outgoing radiation condition. For n-->infinity, their frequencies omega(n) approach the mass of the vector boson, M-W, while their lifetimes 1/gamma(n) tend to infinity. The response of the monopole to an arbitrary initial perturbation is largely determined by these resonant modes, whose collective effect leads to the formation of a long living breatherlike excitation with an amplitude decaying at late times as t(-5/6).
引用
收藏
页码:151802 / 1
页数:4
相关论文
共 15 条
[1]  
BAAKE J, 1992, Z PHYS C, V53, P399
[2]   ZERO MODES AND BOUND-STATES OF THE SUPERSYMMETRIC MONOPOLE [J].
BAIS, FA ;
TROOST, W .
NUCLEAR PHYSICS B, 1981, 178 (01) :125-140
[3]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[4]   STRING SOLITONS [J].
DUFF, MJ ;
KHURI, RR ;
LU, JX .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 259 (4-5) :213-326
[5]   Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry [J].
Finster, F ;
Kamran, N ;
Smoller, J ;
Yau, ST .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (02) :201-244
[6]   What does a strongly excited 't Hooft-Polyakov magnetic monopole do? -: art. no. 151801 [J].
Fodor, G ;
Rácz, I .
PHYSICAL REVIEW LETTERS, 2004, 92 (15) :151801-1
[7]   MAGNETIC MONOPOLES IN GAUGE FIELD-THEORIES [J].
GODDARD, P ;
OLIVE, DI .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (09) :1357-1437
[8]   Quasi-normal modes of stars and black holes [J].
Kokkotas K.D. ;
Schmidt B.G. .
Living Reviews in Relativity, 1999, 2 (1)
[9]   Slowly decaying tails of massive scalar fields in spherically symmetric spacetimes [J].
Koyama, H ;
Tomimatsu, A .
PHYSICAL REVIEW D, 2002, 65 (08) :840311-840318
[10]  
Motl L., 2002, ADV THEOR MATH PHYS, V6, P1135