Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry

被引:34
作者
Finster, F
Kamran, N
Smoller, J
Yau, ST
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200200648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Keff-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L-loc(infinity) at least at the rate t(-5/6). For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
引用
收藏
页码:201 / 244
页数:44
相关论文
共 10 条
[1]   On the stability of the Kerr metric [J].
Beyer, HR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (03) :659-676
[2]  
Carter B., 1972, BLACK HOLES ASTRES O
[3]   SOLUTION OF DIRACS EQUATION IN KERR GEOMETRY [J].
CHANDRASEKHAR, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1659) :571-575
[4]  
FINSTER F, GRQC0005088
[5]   LINEAR-STABILITY OF SCHWARZSCHILD UNDER PERTURBATIONS WHICH ARE NONVANISHING ON THE BIFURCATION 2-SPHERE [J].
KAY, BS ;
WALD, RM .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :893-898
[6]   Asymptotic power-law tails of massive scalar fields in a Reissner-Nordstrom background [J].
Koyama, H ;
Tomimatsu, A .
PHYSICAL REVIEW D, 2001, 63 (06)
[7]   Asymptotic tails of massive scalar fields in a Schwarzschild background [J].
Koyama, H ;
Tomimatsu, A .
PHYSICAL REVIEW D, 2001, 64 (04)
[8]   NONSPHERICAL PERTURBATIONS OF RELATIVISTIC GRAVITATIONAL COLLAPSE .2. INTEGER-SPIN, ZERO-REST-MASS FIELDS [J].
PRICE, RH .
PHYSICAL REVIEW D, 1972, 5 (10) :2439-&
[9]   NONSPHERICAL PERTURBATIONS OF RELATIVISTIC GRAVITATIONAL COLLAPSE .1. SCALAR AND GRAVITATIONAL PERTURBATIONS [J].
PRICE, RH .
PHYSICAL REVIEW D, 1972, 5 (10) :2419-&
[10]   MODE-STABILITY OF THE KERR BLACK-HOLE [J].
WHITING, BF .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) :1301-1305