Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery

被引:53
作者
Zhao, Chunhui [1 ]
Li, Xiaohui [1 ,2 ]
Ren, Jinchang [2 ]
Marshall, Stephen [2 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Univ Strathclyde, Dept Elect & Elect Engn, Ctr Excellence Signal & Image Proc, Glasgow G1 1XW, Lanark, Scotland
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; PATTERN;
D O I
10.1080/01431161.2013.845924
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With increasing applications of hyperspectral imagery (HSI) in agriculture, mineralogy, military, and other fields, one of the fundamental tasks is accurate detection of the target of interest. In this article, improved sparse representation approaches using adaptive spatial support are proposed for effective target detection in HSI. For conventional sparse representation, an HSI pixel is represented as a sparse vector whose non-zero entries correspond to the weights of the selected training atoms from a structured dictionary. For improved sparse representation, spatial correlation and spectral similarity of adjacent neighbouring pixels are exploited as spatial support in this context. The size and shape of the spatial support is automatically determined using both adaptive window and adaptive neighbourhood strategies. Accordingly, a solution based on greedy pursuit algorithms is also given to solve the extended optimization problem in recovering the desired sparse representation. Comprehensive experiments on three different data sets using both visual inspection and quantitative evaluation are carried out. The results from these data sets have indicated that the proposed approaches help to generate improved results in terms of efficacy and efficiency.
引用
收藏
页码:8669 / 8684
页数:16
相关论文
共 25 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   A support vector method for anomaly detection in hyperspectral imagery [J].
Banerjee, Amit ;
Burlina, Philippe ;
Diehl, Chris .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2282-2291
[3]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[4]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[5]   Semisupervised Dimensionality Reduction With Pairwise Constraints for Hyperspectral Image Classification [J].
Chen, Shiguo ;
Zhang, Daoqiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (02) :369-373
[6]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[7]   Sparse Representation for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :629-640
[8]   Subspace Pursuit for Compressive Sensing Signal Reconstruction [J].
Dai, Wei ;
Milenkovic, Olgica .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) :2230-2249
[9]   Automated Hyperspectral Cueing for Civilian Search and Rescue [J].
Eismann, Michael T. ;
Stocker, Alan D. ;
Nasrabadi, Nasser M. .
PROCEEDINGS OF THE IEEE, 2009, 97 (06) :1031-1055
[10]   Kernel-based regularized-angle spectral matching for target detection in hyperspectral imagery [J].
Gu, Yanfeng ;
Wang, Chen ;
Wang, Shizhe ;
Zhang, Ye .
PATTERN RECOGNITION LETTERS, 2011, 32 (02) :114-119