Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease

被引:23
作者
Peham, M
Panzer, S
Fasching, K
Haas, OA
Fischer, S
Marschalek, R
Gadner, H
Panzer-Grümayer, ER
机构
[1] St Anna Childrens Hosp, Childrens Canc Res Inst, A-1090 Vienna, Austria
[2] Univ Vienna, Clin Blood Grp Serol, Vienna, Austria
[3] Goethe Univ Frankfurt, Inst Pharmaceut Biol, D-6000 Frankfurt, Germany
关键词
infant ALL; t(4; 11); minimal residual disease (MRD); immunoglobulin; TCR gene rearrangement;
D O I
10.1046/j.1365-2141.2002.03428.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Infant t(4;11) acute lymphoblastic leukaemia (ALL) is a rare but cytogenetically well defined subgroup of immature B-cell precursor (BCP) ALL. To date, the configuration of their antigen receptor genes has not been studied in a large group of patients so far. In this study on 27 t(4;11) infant ALL, we have used standardized primer sets for the detection of all incomplete and complete immunoglobulin (Ig) heavy chain (IGH) rearrangements, as well as for the Ig light chain kappa (IGK), T-cell receptor delta (TCRD) and gamma (TCRG) rearrangements that are most common in childhood BCP ALL. Only 52% of cases displayed clonotypic antigen receptor gene rearrangements (IGH in 48%, IGK, TCRD and TCRG in 12%, 41% and 6% respectively). This low frequency suggests, together with the findings of predominantly incomplete DJh joins and monoallelic IGH rearrangements, that they are derived from an immature progenitor cell. As 48% of the t(4;11) infant ALL cases had no detectable antigen receptor gene rearrangements that could be used for minimal residual disease (MRD) analysis, we established an expression-independent, leukaemia-specific polymerase chain reaction (PCR) using the genomic sequence of the MLL-AF4 fusion genes. This method had high sensitivity and specificity and resulted in identical estimations of tumour loads when compared with IGH targets. Thus, genomic MLL-AF4 fusion genes are a good alternative target for the analysis of MRD in patients with t(4;11) leukaemias.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 45 条
[1]   VDJ RECOMBINATION [J].
ALT, FW ;
OLTZ, EM ;
YOUNG, F ;
GORMAN, J ;
TACCIOLI, G ;
CHEN, J .
IMMUNOLOGY TODAY, 1992, 13 (08) :306-314
[2]  
AUBIN J, 1995, LEUKEMIA, V9, P471
[3]   ANALYSIS OF IG AND T-CELL RECEPTOR GENES IN 40 CHILDHOOD ACUTE LYMPHOBLASTIC LEUKEMIAS AT DIAGNOSIS AND SUBSEQUENT RELAPSE - IMPLICATIONS FOR THE DETECTION OF MINIMAL RESIDUAL DISEASE BY POLYMERASE CHAIN-REACTION ANALYSIS [J].
BEISHUIZEN, A ;
VERHOEVEN, MAJ ;
VANWERING, ER ;
HAHLEN, K ;
HOOIJKAAS, H ;
VANDONGEN, JJM .
BLOOD, 1994, 83 (08) :2238-2247
[4]  
BEISHUIZEN A, 1991, LEUKEMIA, V5, P657
[5]  
BEISHUIZEN A, 1994, LEUKEMIA, V8, P2228
[6]   Biological and therapeutic aspects of infant leukemia [J].
Biondi, A ;
Cimino, G ;
Pieters, R ;
Pui, CH .
BLOOD, 2000, 96 (01) :24-33
[7]  
BIONDI A, 1993, BLOOD, V82, P2943
[8]  
Brumpt C, 2000, BLOOD, V96, P2254
[9]  
CARTER M, 1991, LEUKEMIA, V5, P668
[10]   Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous V-H-V-H gene replacements and V-H-DJ(H) gene rearrangements [J].
Choi, Y ;
Greenberg, SJ ;
Du, TL ;
Ward, PM ;
Overturf, PM ;
Brecher, ML ;
Ballow, M .
BLOOD, 1996, 87 (06) :2506-2512