Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO2 Reduction

被引:516
作者
Luc, Wesley [1 ]
Collins, Charles [1 ]
Wang, Siwen [2 ]
Xin, Hongliang [2 ]
He, Kai [3 ,4 ]
Kang, Yijin [3 ,5 ]
Jiao, Feng [1 ]
机构
[1] Univ Delaware, Ctr Catalyt Sci & Technol, Dept & Biomol Engn, Newark, DE 19716 USA
[2] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, NUANCE Ctr, Evanston, IL 60208 USA
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; TIN ELECTRODES; AQUEOUS CO2; ELECTROCATALYSTS; NANOPARTICLES; SELECTIVITY; EFFICIENCY; DESIGN;
D O I
10.1021/jacs.6b10435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Converting greenhouse gas carbon dioxide (CO2) to value-added chemicals is an appealing approach to tackle CO2 emission challenges. The chemical transformation of CO2 requires suitable catalysts that can lower the activation energy barrier, thus minimizing the energy penalty associated with the CO2 reduction reaction. First-row transition metals are potential candidates as catalysts for electrochemical CO2 reduction; however, their high oxygen affinity makes them easy to be oxidized, which could, in turn, strongly affect the catalytic properties of metal-based catalysts. In this work, we propose a strategy to synthesize Ag-Sn electrocatalysts with a core shell nanostructure that contains a bimetallic core responsible for high electronic conductivity and an ultrathin partially oxidized shell for catalytic CO2 conversion. This concept was demonstrated by a series of Ag-Sn bimetallic electrocatalysts. At an optimal SnOx shell thickness of similar to 1.7 nm, the catalyst exhibited a high formate Faradaic efficiency of similar to 80% and a formate partial current density of similar to 16 mA cm(-2) at -0.8 V vs RHE, a remarkable performance in comparison to state-of-the-art formate-selective CO, reduction catalysts. Density functional theory calculations showed that oxygen vacancies on the SnO (101) surface are stable at highly negative potentials and crucial for CO2 activation. In addition, the adsorption energy of CO2- at these oxygen-vacant sites can be used as the descriptor for catalytic performance because of its linear correlation to OCHO* and COOH*, two critical intermediates for the HCOOH and CO formation pathways, respectively. The volcano-like relationship between catalytic activity toward formate as a function of the bulk Sn concentration arises from the competing effects of favorable stabilization of OCHO* by lattice expansion and the electron conductivity loss due to the increased thickness of the SnOx layer.
引用
收藏
页码:1885 / 1893
页数:9
相关论文
共 36 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[3]   Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy [J].
Baruch, Maor F. ;
Pander, James E., III ;
White, James L. ;
Bocarsly, Andrew B. .
ACS CATALYSIS, 2015, 5 (05) :3148-3156
[4]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[5]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[6]   Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition [J].
Choi, Jihui ;
Kim, Myung Jun ;
Ahn, Sang Hyun ;
Choi, Insoo ;
Jang, Jong Hyun ;
Ham, Yu Seok ;
Kim, Jae Jeong ;
Kim, Soo-Kil .
CHEMICAL ENGINEERING JOURNAL, 2016, 299 :37-44
[7]   Electrochemical Reduction of Carbon Dioxide to Formate on Tin-Lead Alloys [J].
Choi, Song Yi ;
Jeong, Soon Kwan ;
Kim, Hak Joo ;
Baek, Il-Hyun ;
Park, Ki Tae .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03) :1311-1318
[8]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[9]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[10]   ELECTROCATALYTIC PROCESS OF CO SELECTIVITY IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL-ELECTRODES IN AQUEOUS-MEDIA [J].
HORI, Y ;
WAKEBE, H ;
TSUKAMOTO, T ;
KOGA, O .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1833-1839