Anomalous heat conduction in one-dimensional momentum-conserving systems

被引:340
作者
Narayan, O [1 ]
Ramaswamy, S [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India
关键词
D O I
10.1103/PhysRevLett.89.200601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for one-dimensional fluids the thermal conductivity generically diverges with system size L as L-1/3, as a result of momentum conservation. Our results are consistent with the largest-scale numerical studies of two-component hard-particle systems. We suggest explanations for the apparent disagreement with studies on Fermi-Pasta-Ulam chains.
引用
收藏
页数:4
相关论文
共 37 条
[1]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[2]  
BONETTO F, MATHPH0002052
[3]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[4]  
CASATI G, CONDMAT0203331
[5]   HEAT FLOW IN REGULAR AND DISORDERED HARMONIC CHAINS [J].
CASHER, A ;
LEBOWITZ, JL .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1701-&
[6]  
Dhar A, 2001, PHYS REV LETT, V86, P5882, DOI 10.1103/PhysRevLett86.5882
[7]   Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses [J].
Dhar, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3554-3557
[8]   MODE-COUPLING THEORY AND TAILS IN CA FLUIDS [J].
ERNST, MH .
PHYSICA D, 1991, 47 (1-2) :198-211
[9]   Stochastic differential equations for non-linear hydrodynamics [J].
Espanol, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 248 (1-2) :77-96
[10]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749