Anomalous heat conduction in one-dimensional momentum-conserving systems

被引:340
作者
Narayan, O [1 ]
Ramaswamy, S [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India
关键词
D O I
10.1103/PhysRevLett.89.200601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for one-dimensional fluids the thermal conductivity generically diverges with system size L as L-1/3, as a result of momentum conservation. Our results are consistent with the largest-scale numerical studies of two-component hard-particle systems. We suggest explanations for the apparent disagreement with studies on Fermi-Pasta-Ulam chains.
引用
收藏
页数:4
相关论文
共 37 条
[11]  
FORSTER D, 1975, HYDRODYNAMIC FLUCTUA, pCH4
[12]   Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction [J].
Gendelman, OV ;
Savin, AV .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2381-2384
[13]   Finite thermal conductivity in 1D lattices [J].
Giardiná, C ;
Livi, R ;
Politi, A ;
Vassalli, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2144-2147
[14]   Heat conduction and entropy production in a one-dimensional hard-particle gas [J].
Grassberger, P ;
Nadler, W ;
Yang, L .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-180601
[15]  
GRASSBERGER P, CONDMAT0204247
[17]   Heat conduction in the diatomic Toda lattice revisited [J].
Hatano, T .
PHYSICAL REVIEW E, 1999, 59 (01) :R1-R4
[18]   Heat conduction in one-dimensional chains [J].
Hu, BB ;
Li, BW ;
Zhao, H .
PHYSICAL REVIEW E, 1998, 57 (03) :2992-2995
[19]   HYDRODYNAMIC EQUATIONS AND CORRELATION FUNCTIONS [J].
KADANOFF, LP ;
MARTIN, PC .
ANNALS OF PHYSICS, 1963, 24 (01) :419-469