Finite thermal conductivity in 1D lattices

被引:211
作者
Giardiná, C
Livi, R
Politi, A
Vassalli, M
机构
[1] Dipartimento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] Dipartimento Fis, I-50125 Florence, Italy
[4] Univ Florence, INFM, Florence, Italy
[5] Ist Nazl Ott Applicata, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevLett.84.2144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the thermal conductivity of a chain of coupled rotators, showing that it is the first example of a 1D nonlinear lattice exhibiting normal transport properties in the absence of an on-site potential. Numerical estimates obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase jumps. Our conclusions are confirmed by the analysis of two variants of this model.
引用
收藏
页码:2144 / 2147
页数:4
相关论文
共 19 条
  • [1] [Anonymous], 1991, STAT PHYS
  • [2] CLASSICAL PERTURBATION-THEORY FOR SYSTEMS OF WEAKLY COUPLED ROTATORS
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 89 (02): : 89 - 102
  • [3] ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY
    CASATI, G
    FORD, J
    VIVALDI, F
    VISSCHER, WM
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (21) : 1861 - 1864
  • [4] Riemannian theory of Hamiltonian chaos and Lyapunov exponents
    Casetti, L
    Clementi, C
    Pettini, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (06): : 5969 - 5984
  • [5] CHOQUARD P, 1963, HELV PHYS ACTA, V36, P415
  • [6] SELF-CONSISTENT CHECK OF THE VALIDITY OF GIBBS CALCULUS USING DYNAMICAL VARIABLES
    ESCANDE, D
    KANTZ, H
    LIVI, R
    RUFFO, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) : 605 - 626
  • [7] Heat conduction in the diatomic Toda lattice revisited
    Hatano, T
    [J]. PHYSICAL REVIEW E, 1999, 59 (01): : R1 - R4
  • [8] CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS
    HOOVER, WG
    [J]. PHYSICAL REVIEW A, 1985, 31 (03): : 1695 - 1697
  • [9] Heat conduction in one-dimensional chains
    Hu, BB
    Li, BW
    Zhao, H
    [J]. PHYSICAL REVIEW E, 1998, 57 (03): : 2992 - 2995
  • [10] HEAT-CONDUCTION IN A ONE-DIMENSIONAL RANDOM MEDIUM
    KELLER, JB
    PAPANICOLAOU, GC
    WEILENMANN, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) : 583 - 592