Flat information geometries in black hole thermodynamics

被引:85
作者
Aman, Jan E. [1 ]
Bengtsson, Ingemar [1 ]
Pidokrajt, Narit [1 ]
机构
[1] Stockholm Univ, AlbaNova Fysikum, S-10691 Stockholm, Sweden
关键词
D O I
10.1007/s10714-006-0306-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hessian of either the entropy or the energy function can be regarded as a metric on a Gibbs surface. For two parameter families of asymptotically flat black holes in arbitrary dimension one or the other of these metrics are flat, and the state space is a flat wedge. The mathematical reason for this is traced back to the scale invariance of the Einstein-Maxwell equations. The picture of state space that we obtain makes some properties such as the occurence of divergent specific heats transparent.
引用
收藏
页码:1305 / 1315
页数:11
相关论文
共 22 条
[1]   Geometry of higher-dimensional black hole thermodynamics -: art. no. 024017 [J].
Åman, JE ;
Pidokrajt, N .
PHYSICAL REVIEW D, 2006, 73 (02)
[2]   Geometry of black hole thermodynamics [J].
Åman, JE ;
Bengtsson, I ;
Pidokrajt, N .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (10) :1733-1743
[3]   Stability and critical phenomena of black holes and black rings [J].
Arcioni, G ;
Lozano-Tellechea, E .
PHYSICAL REVIEW D, 2005, 72 (10)
[4]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[5]  
Bengtsson I., 2006, Geometry of Quantum States, DOI 10.1017/CBO9780511535048
[6]   THERMODYNAMIC THEORY OF BLACK-HOLES [J].
DAVIES, PCW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1675) :499-521
[7]  
Dubrovin B., 1996, LECT NOTES MATH, V1620
[8]   A rotating black ring solution in five dimensions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[9]   Black holes and critical points in moduli space [J].
Ferrara, S ;
Gibbons, GW ;
Kallosh, R .
NUCLEAR PHYSICS B, 1997, 500 (1-3) :75-93
[10]   SYSTEMATIC APPLICATION OF GENERALIZED HOMOGENEOUS FUNCTIONS TO STATIC SCALING, DYNAMIC SCALING, AND UNIVERSALITY [J].
HANKEY, A ;
STANLEY, HE .
PHYSICAL REVIEW B, 1972, 6 (09) :3515-&