Data approximation using biarcs

被引:37
作者
Piegl, LA
Tiller, W
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] Geom Ware Inc, Tyler, TX USA
关键词
algorithms; biarcs; curves and surfaces; data approximation;
D O I
10.1007/s003660200005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An algorithm for data approximation with biarcs is presented. The method uses a specific formulation of biarcs appropriate for parametric curves in Bezier or NURBS,formulation. A base curve is applied to obtain tangents and anchor points for the individual arcs joining in G(1) continuity. Data sampled from circular arcs or straight line segments is represented precisely by one biarc. The method is most useful in numerical control to drive the cutter along straight line or circular paths.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 20 条
[2]  
B~ezier P., 1972, Numerical Control Mathematics and Applications
[3]  
Bolton K. M., 1975, Computer Aided Design, V7, P89, DOI 10.1016/0010-4485(75)90086-X
[4]   CIRCULAR SPLINES [J].
HOSCHEK, J .
COMPUTER-AIDED DESIGN, 1992, 24 (11) :611-618
[5]   APPROXIMATING QUADRATIC NURBS CURVES BY ARC SPLINES [J].
MEEK, DS ;
WALTON, DJ .
COMPUTER-AIDED DESIGN, 1993, 25 (06) :371-376
[6]   APPROXIMATION OF DISCRETE-DATA BY G(1) ARC SPLINES [J].
MEEK, DS ;
WALTON, DJ .
COMPUTER-AIDED DESIGN, 1992, 24 (06) :301-306
[7]  
Moreton D. N., 1991, Computer-Aided Engineering Journal, V8, P54, DOI 10.1049/cae.1991.0012
[8]  
NUTBOURNE AW, 1988, DIFFERENTIAL GEOMETR, V1
[9]   An optimization approach for biarc curve-fitting of B-spline curves [J].
Ong, CJ ;
Wong, YS ;
Loh, HT ;
Hong, XG .
COMPUTER-AIDED DESIGN, 1996, 28 (12) :951-959
[10]   OPTIMAL BIARC-CURVE FITTING [J].
PARKINSON, DB ;
MORETON, DN .
COMPUTER-AIDED DESIGN, 1991, 23 (06) :411-419