Molecular dissection of hippocampal theta-burst pairing potentiation

被引:140
作者
Hoffman, DA [1 ]
Sprengel, R [1 ]
Sakmann, B [1 ]
机构
[1] Max Planck Inst Med Res, Abt Zellphysiol & Mol Neurobiol, D-69120 Heidelberg, Germany
关键词
D O I
10.1073/pnas.092157999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-term potentiation (LTP) of synaptic efficacy in the hippocampus is frequently induced by tetanic stimulation of presynaptic afferents or by pairing low frequency stimulation with postsynaptic depolarization. Adult (P42) GluR-A(-/-) mice largely lack these forms of LTP. LTP in wt mice can also be induced by coincident pre- and postsynaptic action potentials, where an initial rapid component is expressed but a substantial fraction of the potentiation develops with a delayed time course. We report here that this stimulation protocol, delivered at theta frequency (5 Hz), induces LTP in GluR-A(-/-) mice in which the initial component is substantially reduced. The remaining GluR-A independent component differs from the initial component in that its expression develops over time after induction and its induction is differentially dependent on postsynaptic intracellular Ca2+ buffering. Thus, in adult mice, theta-burst pairing evokes two forms of synaptic potentiation that are induced simultaneously but whose expression levels vary inversely with time. The two components of synaptic potentiation could be relevant for different forms of information storage that are dependent on hippocampal synaptic transmission such as spatial reference and working memory.
引用
收藏
页码:7740 / 7745
页数:6
相关论文
共 26 条
[1]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[2]   Modulation of AMPA receptor unitary conductance by synaptic activity [J].
Benke, TA ;
Lüthi, A ;
Isaac, JTR ;
Collingridge, GL .
NATURE, 1998, 393 (6687) :793-797
[3]   Requirements for LTP induction by pairing in hippocampal CA1 pyramidal cells [J].
Chen, HX ;
Otmakhov, N ;
Lisman, J .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (02) :526-532
[4]   Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations [J].
De Koninck, P ;
Schulman, H .
SCIENCE, 1998, 279 (5348) :227-230
[5]   Dendritic spine changes associated with hippocampal long-term synaptic plasticity [J].
Engert, F ;
Bonhoeffer, T .
NATURE, 1999, 399 (6731) :66-70
[6]  
GUSTAFSSON B, 1987, J NEUROSCI, V7, P774
[7]   THE SPREAD OF NA+ SPIKES DETERMINES THE PATTERN OF DENDRITIC CA2+ ENTRY INTO HIPPOCAMPAL-NEURONS [J].
JAFFE, DB ;
JOHNSTON, D ;
LASSERROSS, N ;
LISMAN, JE ;
MIYAKAWA, H ;
ROSS, WN .
NATURE, 1992, 357 (6375) :244-246
[8]   PATTERNED STIMULATION AT THE THETA-FREQUENCY IS OPTIMAL FOR THE INDUCTION OF HIPPOCAMPAL LONG-TERM POTENTIATION [J].
LARSON, J ;
WONG, D ;
LYNCH, G .
BRAIN RESEARCH, 1986, 368 (02) :347-350
[9]   ACTIVATION OF POSTSYNAPTICALLY SILENT SYNAPSES DURING PAIRING-INDUCED LTP IN CA1 REGION OF HIPPOCAMPAL SLICE [J].
LIAO, DZ ;
HESSLER, NA ;
MALINOW, R .
NATURE, 1995, 375 (6530) :400-404
[10]   Conditional restoration of hippocampal synaptic potentiation in GluR-A-deficient mice [J].
Mack, V ;
Burnashev, N ;
Kaiser, KMM ;
Rozov, A ;
Jensen, V ;
Hvalby, O ;
Sakmann, B ;
Seeburg, PH ;
Sprengel, R .
SCIENCE, 2001, 292 (5526) :2501-2504