Space-Confined Growth of MoS2 Nanosheets within Graphite: The Layered Hybrid of MoS2 and Graphene as an Active Catalyst for Hydrogen Evolution Reaction

被引:639
作者
Zheng, Xiaoli [1 ]
Xu, Jianbo [1 ]
Yan, Keyou [1 ]
Wang, Hong [1 ]
Wang, Zilong [1 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
关键词
EDGE SITES; REVERSIBLE CAPACITY; ANODE MATERIAL; NANOPARTICLES; ELECTROCATALYST; FREQUENCY; COMPOSITE; PERFORMANCE; EFFICIENT; REDUCTION;
D O I
10.1021/cm500347r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since the electrocatalytic activity of layered molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER) closely depends on its exposed edges, the morphology and size of the material are critically important. Herein, we introduce a novel solvent-evaporation-assisted intercalation method to fabricate the hybrid of alternating MoS2 sheets and reduced graphene oxide layers, in which the nanosize of the MoS2 nanosheets can be effectively controlled by leveraging the confinement effect within the two-dimensional graphene layers. Significantly, the resulting MoS2/reduced graphene oxide (RGO) composite shows excellent catalytic activity for HER characterized by higher current densities and lower onset potentials than the conventional pre-exfoliated RGO supported MoS2 nanosheets. Further experiments on the effect of oxidation degree of graphene, the crystallinity of MoS2, and the exposed active site density on the HER performance of the MoS2/RGO composites show that there is an optimum condition for the catalytic activity of HER due to a balance between the numbers of exposed active sites of MoS2 and the internal conductive channels provided by graphene.
引用
收藏
页码:2344 / 2353
页数:10
相关论文
共 71 条
[1]   Palladium in fuel cell catalysis [J].
Antolini, Ermete .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (09) :915-931
[2]   XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions [J].
Baker, MA ;
Gilmore, R ;
Lenardi, C ;
Gissler, W .
APPLIED SURFACE SCIENCE, 1999, 150 (1-4) :255-262
[3]   Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction [J].
Baranton, Steve ;
Coutanceau, Christophe .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 136 :1-8
[4]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[5]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[6]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[7]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[8]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[9]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[10]   One-pot reduction of graphene oxide at subzero temperatures [J].
Cui, Peng ;
Lee, Junghyun ;
Hwang, Eunhee ;
Lee, Hyoyoung .
CHEMICAL COMMUNICATIONS, 2011, 47 (45) :12370-12372