Lee-Yang zeros and phase transitions in nonequilibrium steady states

被引:67
作者
Blythe, RA [1 ]
Evans, MR
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.89.080601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider how the Lee-Yang description of phase transitions in terms of partition function zeros applies to nonequilibrium systems. Here, one does not have a partition function; instead we consider the zeros of a steady-state normalization factor in the complex plane of the transition rates. We obtain the exact distribution of zeros in the thermodynamic limit for a specific model, the boundary-driven asymmetric simple exclusion process. We show that the distributions of zeros at the first- and the second-order nonequilibrium phase transitions of this model follow the patterns known in the Lee-Yang equilibrium theory.
引用
收藏
页码:080601/1 / 080601/4
页数:4
相关论文
共 25 条
[21]   PHASE-TRANSITIONS IN AN EXACTLY SOLUBLE ONE-DIMENSIONAL EXCLUSION PROCESS [J].
SCHUTZ, G ;
DOMANY, E .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) :277-296
[22]  
SCHUTZ GM, 2000, PHASE TRANSITIONS CR
[23]   Stochastic non-equilibrium systems [J].
Stinchcombe, R .
ADVANCES IN PHYSICS, 2001, 50 (05) :431-496
[24]   STATISTICAL THEORY OF EQUATIONS OF STATE AND PHASE TRANSITIONS .1. THEORY OF CONDENSATION [J].
YANG, CN ;
LEE, TD .
PHYSICAL REVIEW, 1952, 87 (03) :404-409
[25]  
[No title captured]