Thermal rectifying effect in two-dimensional anharmonic lattices

被引:76
作者
Lan, Jinghua [1 ]
Li, Baowen
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] Nanjing Univ, Lab Modern Acoust, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Inst Acoust, Nanjing 210093, Peoples R China
[5] NUS, Grad Sch Integrat Sci & Engn, Singapore 117597, Singapore
关键词
D O I
10.1103/PhysRevB.74.214305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study thermal rectifying effect in two-dimensional systems consisting of the Frenkel Kontorva lattice and the Fermi-Pasta-Ulam lattice. It is found that the rectifying effect is related to the asymmetrical interface thermal resistance. The rectifying efficiency is typically about two orders of magnitude which is large enough to be observed in experiment. The dependence of rectifying efficiency on the temperature and temperature gradient is studied. The underlying mechanism is found to be the match and mismatch of the spectra of lattice vibration in two parts.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Polygonal billiards and transport: Diffusion and heat conduction [J].
Alonso, D ;
Ruiz, A ;
de Vega, I .
PHYSICAL REVIEW E, 2002, 66 (06) :15-066131
[2]   Fermi-Pasta-Ulam β model:: Boundary jumps, Fourier's law, and scaling [J].
Aoki, K ;
Kusnezov, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :4029-4032
[3]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[6]   Energy transport between two attractors connected by a Fermi-Pasta-Ulam chain [J].
Fillipov, A ;
Hu, B ;
Li, BW ;
Zeltser, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38) :7719-7728
[7]   Normal heat conductivity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction [J].
Gendelman, OV ;
Savin, AV .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2381-2384
[8]   Finite thermal conductivity in 1D lattices [J].
Giardiná, C ;
Livi, R ;
Politi, A ;
Vassalli, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2144-2147
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   Heat conduction in the Frenkel-Kontorova model [J].
Hu, BB ;
Yang, L .
CHAOS, 2005, 15 (01)