Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins

被引:175
作者
Meek, SEM
Lane, WS
Piwnica-Worms, H [1 ]
机构
[1] Harvard Univ, Howard Hughes Med Inst, Cambridge, MA 02138 USA
[2] Harvard Univ, Microchem & Proteom Anal Facil, Cambridge, MA 02138 USA
[3] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M403044200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3zeta affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-3-3-binding proteins and implicates a role for 14-3-3 proteins in a plethora of essential biological processes.
引用
收藏
页码:32046 / 32054
页数:9
相关论文
共 51 条
[1]   14-3-3 PROTEINS ON THE MAP [J].
AITKEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :95-97
[2]   14-3-3 PROTEINS - A HIGHLY CONSERVED, WIDESPREAD FAMILY OF EUKARYOTIC PROTEINS [J].
AITKEN, A ;
COLLINGE, DB ;
VANHEUSDEN, BPH ;
ISOBE, T ;
ROSEBOOM, PH ;
ROSENFELD, G ;
SOLL, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (12) :498-501
[3]   IDENTIFICATION AND CHARACTERIZATION OF NEW ELEMENTS INVOLVED IN CHECKPOINT AND FEEDBACK CONTROLS IN FISSION YEAST [J].
ALKHODAIRY, F ;
FOTOU, E ;
SHELDRICK, KS ;
GRIFFITHS, DJF ;
LEHMANN, AR ;
CARR, AM .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (02) :147-160
[4]   14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase [J].
Bunney, TD ;
van Walraven, HS ;
de Boer, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :4249-4254
[5]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[6]   Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules [J].
Catalano, CM ;
Lane, WS ;
Sherrier, DJ .
ELECTROPHORESIS, 2004, 25 (03) :519-531
[7]   14-3-3σ is required to prevent mitotic catastrophe after DNA damage [J].
Chan, TA ;
Hermeking, H ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
NATURE, 1999, 401 (6753) :616-620
[8]   Association of Chk1 with 14-3-3 proteins is stimulated by DNA damage [J].
Chen, L ;
Liu, TH ;
Walworth, NC .
GENES & DEVELOPMENT, 1999, 13 (06) :675-685
[9]   Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase [J].
Chen, MS ;
Hurov, J ;
White, LS ;
Woodford-Thomas, T ;
Piwnica-WormS, H .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (12) :3853-3861
[10]   Apical surface formation in MDCK cells:: regulation by the serine/threonine kinase EMK1 [J].
Cohen, D ;
Müsch, A .
METHODS, 2003, 30 (03) :269-276