Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation

被引:152
作者
Van der Ent, Sjoerd [1 ,2 ]
Van Hulten, Marieke [1 ]
Pozo, Maria J. [1 ,3 ]
Czechowski, Tomasz [4 ,5 ]
Udvardi, Michael K. [4 ,6 ]
Pieterse, Corne M. J. [1 ,2 ]
Ton, Jurriaan [1 ,7 ]
机构
[1] Univ Utrecht, Grad Sch Expt Plant Sci, Inst Environm Biol, Fac Sci, NL-3508 TB Utrecht, Netherlands
[2] Ctr Biosyst Genom, NL-6700 AB Wageningen, Netherlands
[3] CSIC, Dept Soil Microbiol & Symbiot Syst, Estn Expt Zaidin, E-18008 Granada, Spain
[4] Max Planck Inst Mol Plant Physiol, D-14476 Golm, Germany
[5] Univ York, CNAP Res Labs, Dept Biol, Area 7, York YO10 5YW, N Yorkshire, England
[6] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
[7] Rothamsted Res, Dept Biol Chem, Harpenden AL5 2JQ, Herts, England
基金
英国生物技术与生命科学研究理事会;
关键词
Arabidopsis thaliana; callose; NPR1; priming; transcription factors; WRKY; INDUCED SYSTEMIC RESISTANCE; ARABIDOPSIS TRANSCRIPTION FACTOR; DISEASE RESISTANCE; ACQUIRED-RESISTANCE; SALICYLIC-ACID; DOWNY MILDEW; DEFENSE; GENES; IDENTIFICATION; EXPRESSION;
D O I
10.1111/j.1469-8137.2009.02851.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Pseudomonas fluorescens WCS417r bacteria and beta-aminobutyric acid can induce disease resistance in Arabidopsis, which is based on priming of defence. In this study, we examined the differences and similarities of WCS417r- and beta-aminobutyric acid-induced priming. Both WCS417r and beta-aminobutyric acid prime for enhanced deposition of callose-rich papillae after infection by the oomycete Hyaloperonospora arabidopsis. This priming is regulated by convergent pathways, which depend on phosphoinositide- and ABA-dependent signalling components. Conversely, induced resistance by WCS417r and beta-aminobutyric acid against the bacterial pathogen Pseudomonas syringae are controlled by distinct NPR1-dependent signalling pathways. As WCS417r and beta-aminobutyric acid prime jasmonate- and salicylate-inducible genes, respectively, we subsequently investigated the role of transcription factors. A quantitative PCR-based genome-wide screen for putative WCS417r- and beta-aminobutyric acid-responsive transcription factor genes revealed distinct sets of priming-responsive genes. Transcriptional analysis of a selection of these genes showed that they can serve as specific markers for priming. Promoter analysis of WRKY genes identified a putative cis-element that is strongly over-represented in promoters of 21 NPR1-dependent, beta-aminobutyric acid-inducible WRKY genes. Our study shows that priming of defence is regulated by different pathways, depending on the inducing agent and the challenging pathogen. Furthermore, we demon-strated that priming is associated with the enhanced expression of transcription factors. New Phytologist (2009) 183: 419-431doi: 10.1111/j.1469-8137.2009.02851.x.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 54 条
[1]  
[Anonymous], 1989, Molecular Cloning: A Laboratory Manual
[2]   Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis [J].
Boter, M ;
Ruíz-Rivero, O ;
Abdeen, A ;
Prat, S .
GENES & DEVELOPMENT, 2004, 18 (13) :1577-1591
[3]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[4]   Priming:: Getting ready for battle [J].
Conrath, Uwe ;
Beckers, Gerold J. M. ;
Flors, Victor ;
Garcia-Agustin, Pilar ;
Jakab, Gabor ;
Mauch, Felix ;
Newman, Mari-Anne ;
Pieterse, Corne M. J. ;
Poinssot, Benoit ;
Pozo, Maria J. ;
Pugin, Alain ;
Schaffrath, Ulrich ;
Ton, Jurriaan ;
Wendehenne, David ;
Zimmerli, Laurent ;
Mauch-Mani, Brigitte .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (10) :1062-1071
[5]   Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis [J].
Czechowski, T ;
Stitt, M ;
Altmann, T ;
Udvardi, MK ;
Scheible, WR .
PLANT PHYSIOLOGY, 2005, 139 (01) :5-17
[6]   Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors:: unprecedented sensitivity reveals novel root- and shoot-specific genes [J].
Czechowski, T ;
Bari, RP ;
Stitt, M ;
Scheible, WR ;
Udvardi, MK .
PLANT JOURNAL, 2004, 38 (02) :366-379
[7]   Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens [J].
De Mortel, Judith E. Van ;
Schat, Henk ;
Moerland, Perry D. ;
Van Themaat, Emiel Ver Loren ;
Van der Ent, Sjoerd ;
Blankestijn, Hetty ;
Ghandilyan, Artak ;
Tsiatsiani, Styliani ;
Aarts, Mark G. M. .
PLANT CELL AND ENVIRONMENT, 2008, 31 (03) :301-324
[8]   Three SAC1-like genes show overlapping patterns of expression in Arabidopsis but are remarkably silent during embryo development [J].
Despres, B ;
Bouissonnié, F ;
Wu, HJ ;
Gomord, V ;
Guilleminot, J ;
Grellet, F ;
Berger, F ;
Delseny, M ;
Devic, M .
PLANT JOURNAL, 2003, 34 (03) :293-306
[9]   Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene [J].
Dong, HS ;
Delaney, TP ;
Bauer, DW ;
Beer, SV .
PLANT JOURNAL, 1999, 20 (02) :207-215
[10]   NPR1, all things considered [J].
Dong, XN .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (05) :547-552