Approximation and comparison for nonsmooth anisotropic motion by mean curvature in RN

被引:33
作者
Bellettini, G
Novaga, M
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
D O I
10.1142/S0218202500000021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a reaction-diffusion inclusion provides a sub-optimal approximation for anisotropic motion by mean curvature in the nonsmooth case. This result is valid in any space dimension and with a time-dependent driving force, provided we assume the existence of a regular flow. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 25 条
  • [1] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [2] ALMGREN F, 1995, J DIFFER GEOM, V42, P1
  • [3] [Anonymous], 1993, P S PURE MATH
  • [4] Minimal barriers for geometric evolutions
    Bellettini, G
    Novaga, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) : 76 - 103
  • [5] Some results on surface measures in calculus of variations.
    Bellettini, G
    Paolini, M
    Venturini, S
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 : 329 - 357
  • [6] Bellettini G., 1995, Differential Integral Equations, V8, P735
  • [7] BELLETTINI G, 1998, IN PRESS MATH MODELS
  • [8] Bellettini G., 1996, J. Hokkaido Math., V25, P537
  • [9] GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS
    CHEN, XF
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) : 116 - 141
  • [10] DEGIORGI E, 1990, METHODS REAL ANAL PA, P120