Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes

被引:338
作者
Bisogno, T
Maurelli, S
Melck, D
DePetrocellis, L
DiMarzo, V
机构
[1] CNR,IST CHIM MOL INTERESSE BIOL,I-80072 ARCO,NAPOLI,ITALY
[2] CNR,IST CIBERNET,I-80072 ARCO,NAPOLI,ITALY
关键词
D O I
10.1074/jbc.272.6.3315
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anandamide (arachidonoylethanolamide, AnNH) and palmitoylethanolamide (PEA) have been proposed as the physiological ligands, respectively, of central and peripheral cannabinoid receptors. Both of these receptors are expressed in immune cells, including macrophages and mast cells/basophils, where immunomodulatory and/or anti-inflammatory actions of AnNH and PEA have been recently reported. We now provide biochemical grounds to these actions by showing that the biosynthesis, uptake, and degradation of AnNH and PEA occur in leukocytes. On stimulation with ionomycin, J774 macrophages and RBL-2H3 basophils produced AnNH and PEA, probably through the hydrolysis of the corresponding N-acylphosphatidylethanolamines, also found among endogenous phospholipids. Immunological challenge of RBL-2H3 cells also caused AnNH and PEA release. The chemical structure and the amounts of AnNH and PEA produced upon ionomycin stimulation were determined by means of double radiolabeling experiments and isotope dilution gas chromatography/ electron impact mass spectrometry. Both cell lines rapidly sequestered the two amides from the culture medium through temperature-dependent, saturable and chemically inactivable mechanisms. Once uptaken by basophils, AnNH and PEA compete for the same inactivating enzyme which catalyzes their hydrolysis to ethanolamine. This enzyme was found in both microsomal and 10,000 x g fractions of RBL cell homogenates, and exhibited similar inhibition and temperature/pH dependence profiles but a significantly higher affinity for PEA with respect to neuronal ''anandamide amidohydrolase.'' The finding of biosynthetic and inactivating mechanisms for AnNH and PEA in macrophages and basophils supports the previously proposed role as local modulators of immune/inflammatory reactions for these two long chain acylethanolamides.
引用
收藏
页码:3315 / 3323
页数:9
相关论文
共 37 条
[31]  
RIENDEAU D, 1994, J BIOL CHEM, V269, P15615
[32]   N-ACYLATED GLYCEROPHOSPHOLIPIDS AND THEIR DERIVATIVES [J].
SCHMID, HHO ;
SCHMID, PC ;
NATARAJAN, V .
PROGRESS IN LIPID RESEARCH, 1990, 29 (01) :1-43
[33]   ANADAMIDE, AN ENDOGENOUS CANNABINOID RECEPTOR AGONIST INHIBITS LYMPHOCYTE-PROLIFERATION AND INDUCES APOPTOSIS [J].
SCHWARZ, H ;
BLANCO, FJ ;
LOTZ, M .
JOURNAL OF NEUROIMMUNOLOGY, 1994, 55 (01) :107-115
[34]   The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons [J].
Skaper, SD ;
Buriani, A ;
DalToso, R ;
Petrelli, L ;
Romanello, S ;
Facci, L ;
Leon, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :3984-3989
[35]   Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes [J].
Stefano, GB ;
Liu, Y ;
Goligorsky, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19238-19242
[36]   Enzymatic synthesis of anandamide, an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolamine pathway in testis: Involvement of Ca2+-dependent transacylase and phosphodiesterase activities [J].
Sugiura, T ;
Kondo, S ;
Sukagawa, A ;
Tonegawa, T ;
Nakane, S ;
Yamashita, A ;
Waku, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 218 (01) :113-117
[37]   PARTIAL-PURIFICATION AND CHARACTERIZATION OF THE PORCINE BRAIN ENZYME HYDROLYZING AND SYNTHESIZING ANANDAMIDE [J].
UEDA, N ;
KURAHASHI, Y ;
YAMAMOTO, S ;
TOKUNAGA, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23823-23827