Glucosinolate research in the Arabidopsis era

被引:499
作者
Wittstock, U
Halkier, BA
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, DK-1871 Frederiksberg C, Denmark
[2] Max Planck Inst Chem Ecol, Dept Biochem, D-07745 Jena, Germany
关键词
D O I
10.1016/S1360-1385(02)02273-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The wide range of biological activities of products derived from the glucosinolate-myrosinase system is biologically and economically important. On the one hand, the degradation products of glucosinolates play an important role in the defence of plants against herbivores. On the other hand, these compounds have toxic (e.g. goitrogenic) as well as protective (e.g. cancer-preventing) effects in higher animals and humans. There is a strong interest in the ability to regulate and optimize the levels of individual glucosinolates tissue-specifically to improve the nutritional value and pest resistance of crops. Recent advances in our understanding of glucosinolate biosynthesis have brought us closer to this goal.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 54 条
[1]   1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica [J].
Agerbirk, N ;
Petersen, BL ;
Olsen, CE ;
Halkier, BA ;
Nielsen, JK .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2001, 49 (03) :1502-1507
[2]   Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus [J].
Andréasson, E ;
Jorgensen, LB ;
Höglund, AS ;
Rask, L ;
Meijer, J .
PLANT PHYSIOLOGY, 2001, 127 (04) :1750-1763
[3]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[4]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[5]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[6]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118
[7]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824
[8]   Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora [J].
Brader, G ;
Tas, É ;
Palva, ET .
PLANT PHYSIOLOGY, 2001, 126 (02) :849-860
[9]  
Chew F.S., 1988, ACS SYM SER, P155
[10]   BIOSYNTHESIS OF MUSTARD OIL GLUCOSIDES .4. ADMINISTRATION OF METHIONINE-C14 + RELATED COMPOUNDS TO HORSERADISH [J].
CHISHOLM, MD ;
WETTER, LR .
CANADIAN JOURNAL OF BIOCHEMISTRY AND PHYSIOLOGY, 1964, 42 (07) :1033-&