Entropic repulsion of the lattice free field .2. The 0-boundary case

被引:24
作者
Deuschel, JD
机构
[1] Fachbereich Mathematik, Technische Universität Berlin
关键词
D O I
10.1007/BF02101291
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is a continuation of [5]. We consider the Euclidean massless free field on a box V-N of volume N-d with 0-boundary condition; that is the centered Gaussian field with covariances given by the Green function of the simple random walk on Z(d), d greater than or equal to 3, killed as it exits V-N. We show that the probability, that all the spins are positive in the box V-N decays exponentially at a surface rate N-d-1. This is in contrast with the rate N-d-2 logN for the infinite field of [5].
引用
收藏
页码:647 / 665
页数:19
相关论文
共 12 条
[1]   The construction of the d+1-dimensional gaussian droplet [J].
BenArous, G ;
Deuschel, JD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) :467-488
[2]   CRITICAL LARGE DEVIATIONS FOR GAUSSIAN FIELDS IN THE PHASE-TRANSITION REGIME .1. [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD .
ANNALS OF PROBABILITY, 1993, 21 (04) :1876-1920
[3]   ENTROPIC REPULSION OF THE LATTICE FREE-FIELD [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD ;
ZEITOUNI, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :417-443
[4]  
BOLTHAUSEN E, 1996, HARMONIC CRISTAL WAL
[5]  
BOLTHAUSEN E, 1996, ENTROPIC REPULSION L, V3
[6]  
BRIEMONT J, 1986, J STAT PHYS, V412, P743
[7]   ON THE MICROSCOPIC VALIDITY OF THE WULFF CONSTRUCTION AND OF THE GENERALIZED YOUNG EQUATION [J].
DECONINCK, J ;
DUNLOP, F ;
RIVASSEAU, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :401-419
[8]  
Georgii H.-O., 1988, Gibbs Measures and Phase Transitions
[9]   DIFFUSION EQUATION TECHNIQUES IN STOCHASTIC MONOTONICITY AND POSITIVE CORRELATIONS [J].
HERBST, I ;
PITT, L .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 87 (03) :275-312
[10]   THE EFFECT OF AN EXTERNAL-FIELD ON AN INTERFACE, ENTROPIC REPULSION [J].
LEBOWITZ, JL ;
MAES, C .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (1-2) :39-49