The construction of the d+1-dimensional gaussian droplet

被引:22
作者
BenArous, G [1 ]
Deuschel, JD [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH 3,D-10623 BERLIN,GERMANY
关键词
D O I
10.1007/BF02102597
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this note is to study the asymptotic behavior of a gaussian random field, under the condition that the variables are positive and the total volume under the variables converges to some fixed number v > 0. In the context of Statistical Mechanics, this corresponds to the problem of constructing a droplet on a hard wall with a given volume. We show that, properly rescaled, the profile of a gaussian configuration converges to a smooth hypersurface, which solves a quadratic variational problem. Our main tool is a scaling dependent large deviation principle for random hypersurfaces.
引用
收藏
页码:467 / 488
页数:22
相关论文
共 15 条
[1]   LANGEVIN DYNAMICS OF AN INTERFACE NEAR A WALL [J].
ABRAHAM, D ;
COLLET, P ;
DECONINCK, J ;
DUNLOP, F .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) :509-532
[2]   CRITICAL LARGE DEVIATIONS FOR GAUSSIAN FIELDS IN THE PHASE-TRANSITION REGIME .1. [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD .
ANNALS OF PROBABILITY, 1993, 21 (04) :1876-1920
[3]   ENTROPIC REPULSION OF THE LATTICE FREE-FIELD [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD ;
ZEITOUNI, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :417-443
[4]   RANDOM SURFACES IN STATISTICAL-MECHANICS - ROUGHENING, ROUNDING, WETTING [J].
BRICMONT, J ;
ELMELLOUKI, A ;
FROHLICH, J .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (5-6) :743-798
[5]   PARTIAL TO COMPLETE WETTING - A MICROSCOPIC DERIVATION OF THE YOUNG RELATION [J].
DECONINCK, J ;
DUNLOP, F .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :827-849
[6]   ON THE MICROSCOPIC VALIDITY OF THE WULFF CONSTRUCTION AND OF THE GENERALIZED YOUNG EQUATION [J].
DECONINCK, J ;
DUNLOP, F ;
RIVASSEAU, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :401-419
[7]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[8]  
DEUSCHEL JD, 1995, ENTROPIC REPULSION L, V2
[9]  
DOBRUSHIN R, 1995, FLUCTUATION SHAPES L
[10]  
Ethier S. N., 1986, MARKOV PROCESSES CHA