The construction of the d+1-dimensional gaussian droplet

被引:22
作者
BenArous, G [1 ]
Deuschel, JD [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH 3,D-10623 BERLIN,GERMANY
关键词
D O I
10.1007/BF02102597
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this note is to study the asymptotic behavior of a gaussian random field, under the condition that the variables are positive and the total volume under the variables converges to some fixed number v > 0. In the context of Statistical Mechanics, this corresponds to the problem of constructing a droplet on a hard wall with a given volume. We show that, properly rescaled, the profile of a gaussian configuration converges to a smooth hypersurface, which solves a quadratic variational problem. Our main tool is a scaling dependent large deviation principle for random hypersurfaces.
引用
收藏
页码:467 / 488
页数:22
相关论文
共 15 条
[11]  
GLIMM J, 1981, QUANTUM PHYSICS
[12]  
Hida T., 1980, BROWNIAN MOTION
[13]   POSITIVELY CORRELATED NORMAL VARIABLES ARE ASSOCIATED [J].
PITT, LD .
ANNALS OF PROBABILITY, 1982, 10 (02) :496-499
[14]  
Spitzer Frank, 1976, Principles of Random Walk
[15]  
Stroock D.W., 1993, PROBABILITY THEORY