Spin foam models for quantum gravity from lattice path integrals

被引:73
作者
Bonzom, Valentin [1 ,2 ]
机构
[1] CNRS, UMR 6207, Ctr Phys Theor, F-13288 Marseille, France
[2] CNRS, ENS Lyon, UMR 5672, Phys Lab, F-69007 Lyon, France
关键词
REGGE CALCULUS; VERTEX;
D O I
10.1103/PhysRevD.80.064028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case, the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.
引用
收藏
页数:15
相关论文
共 33 条
[21]   A new spin foam model for 4D gravity [J].
Freidel, Laurent ;
Krasnov, Kirill .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (12)
[22]   LATTICE GAUGE GRAVITY [J].
KAWAMOTO, N ;
NIELSEN, HB .
PHYSICAL REVIEW D, 1991, 43 (04) :1150-1156
[23]   Solving the simplicity constraints for spinfoam quantum gravity [J].
Livine, E. R. ;
Speziale, S. .
EPL, 2008, 81 (05)
[24]   New spinfoam vertex for quantum gravity [J].
Livine, Etera R. ;
Speziale, Simone .
PHYSICAL REVIEW D, 2007, 76 (08)
[25]  
Livine ER, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/11/092
[26]   TOPOLOGICAL LATTICE MODELS IN 4 DIMENSIONS [J].
OOGURI, H .
MODERN PHYSICS LETTERS A, 1992, 7 (30) :2799-2810
[27]  
ORITI D, ARXIV09023903
[28]   SEPARATION OF EINSTEINIAN SUBSTRUCTURES [J].
PLEBANSKI, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (12) :2511-2520
[29]   GENERAL RELATIVITY WITHOUT COORDINATES [J].
REGGE, T .
NUOVO CIMENTO, 1961, 19 (03) :558-571
[30]  
Reisenberger M. P., ARXIVGRQC9804061