Fair Morse functions for extracting the topological structure of a surface mesh

被引:105
作者
Ni, XL [1 ]
Garland, M [1 ]
Hart, JC [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2004年 / 23卷 / 03期
关键词
atlas generation; computational topology; Morse theory; surface parameterization; texture mapping;
D O I
10.1145/1015706.1015769
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Morse theory reveals the topological structure of a shape based on the critical points of a real function over the shape. A poor choice of this real function can lead to a complex configuration of an unnecessarily high number of critical points. This paper solves a relaxed form of Laplace's equation to find a "fair" Morse function with a user-controlled number and configuration of critical points. When the number is minimal, the resulting Morse complex cuts the shape into a disk. Specifying additional critical points at surface features yields a base domain that better represents the geometry and shares the same topology as the original mesh, and can also cluster a mesh into approximately developable patches. We make Morse theory on meshes more robust with teflon saddles and flat edge collapses, and devise a new "intermediate value propagation" multigrid solver for finding fair Morse functions that runs in provably linear time.
引用
收藏
页码:613 / 622
页数:10
相关论文
共 47 条
[1]  
AKSOYLU B, 2003, IN PRESS SIAM J SCI
[2]  
[Anonymous], P ACM SCG, DOI [10.1145/513400.513430, DOI 10.1145/513400.513430]
[3]  
AXEN U, 1998, MATH VISUALIZATION, P223
[4]   Topology preserving data simplification with error bounds [J].
Bajaj, CL ;
Schikore, DR .
COMPUTERS & GRAPHICS-UK, 1998, 22 (01) :3-12
[5]   Visualization of scalar topology for structural enhancement [J].
Bajaj, CL ;
Pascucci, V ;
Schikore, DR .
VISUALIZATION '98, PROCEEDINGS, 1998, :51-58
[6]   CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRAL SURFACES [J].
BANCHOFF, TF .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05) :475-&
[7]   Sparse matrix solvers on the GPU:: Conjugate gradients and multigrid [J].
Bolz, J ;
Farmer, I ;
Grinspun, E ;
Schröder, P .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :917-924
[8]   A multi-resolution data structure for two-dimensional Morse-Smale functions [J].
Bremer, PT ;
Edelsbrunner, H ;
Hamann, B ;
Pascucci, V .
IEEE VISUALIZATION 2003, PROCEEDINGS, 2003, :139-146
[9]  
Chung F, 1997, C BOARD MATH SCI AM
[10]  
de Verdière ÉC, 2002, ANN IEEE SYMP FOUND, P627, DOI 10.1109/SFCS.2002.1181986