A multi-resolution data structure for two-dimensional Morse-Smale functions

被引:40
作者
Bremer, PT [1 ]
Edelsbrunner, H [1 ]
Hamann, B [1 ]
Pascucci, V [1 ]
机构
[1] Univ Calif Davis, Ctr Image Proc & Integrated Computing, Davis, CA 95616 USA
来源
IEEE VISUALIZATION 2003, PROCEEDINGS | 2003年
关键词
critical point theory; Morse-Smale complexes; terrains; simplification; multi-resolution data structure;
D O I
10.1109/VISUAL.2003.1250365
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex, we construct a topological hierarchy by progressively canceling critical points in pairs. Concurrently, we create a geometric hierarchy by adapting the geometry to the changes in topology. The data structure supports mesh traversal operations similarly to traditional multi-resolution representations.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 33 条
[1]  
Alexandrov P. S., 1998, COMBINATORIAL TOPOLO
[2]   Topology preserving data simplification with error bounds [J].
Bajaj, CL ;
Schikore, DR .
COMPUTERS & GRAPHICS-UK, 1998, 22 (01) :3-12
[3]   MONOTONE PIECEWISE BICUBIC INTERPOLATION [J].
CARLSON, RE ;
FRITSCH, FN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :386-400
[4]  
CAYLEY A, 1859, PHILOS MAG, V18, P264
[5]   Metro:: Measuring error on simplified surfaces [J].
Cignoni, P ;
Rocchini, C ;
Scopigno, R .
COMPUTER GRAPHICS FORUM, 1998, 17 (02) :167-174
[6]  
ECHEKKI T, 2003, IN PRESS COMBUST FLA
[7]   Topological persistence and simplification [J].
Edelsbrunner, H ;
Letscher, D ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) :511-533
[8]   SIMULATION OF SIMPLICITY - A TECHNIQUE TO COPE WITH DEGENERATE CASES IN GEOMETRIC ALGORITHMS [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (01) :66-104
[9]  
Edelsbrunner H., 2001, PROC 17 ANN ACM SYMP, P70, DOI DOI 10.1145/378583.378626
[10]  
Edelsbrunner H., 2003, Proceedings of the nineteenth annual symposium on Computational geometry, P361, DOI DOI 10.1145/777792.777846