A multi-resolution data structure for two-dimensional Morse-Smale functions

被引:40
作者
Bremer, PT [1 ]
Edelsbrunner, H [1 ]
Hamann, B [1 ]
Pascucci, V [1 ]
机构
[1] Univ Calif Davis, Ctr Image Proc & Integrated Computing, Davis, CA 95616 USA
来源
IEEE VISUALIZATION 2003, PROCEEDINGS | 2003年
关键词
critical point theory; Morse-Smale complexes; terrains; simplification; multi-resolution data structure;
D O I
10.1109/VISUAL.2003.1250365
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex, we construct a topological hierarchy by progressively canceling critical points in pairs. Concurrently, we create a geometric hierarchy by adapting the geometry to the changes in topology. The data structure supports mesh traversal operations similarly to traditional multi-resolution representations.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 33 条
[11]   Topology simplification for polygonal virtual environments [J].
El-Sana, J ;
Varshney, A .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1998, 4 (02) :133-144
[12]   Mean value coordinates [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) :19-27
[13]  
Fomenko A., 1997, Topological modeling for visualization
[14]  
Garland Michael, 1997, P 24 ANN C COMP GRAP, P209, DOI DOI 10.1145/258734.258849
[15]   Topology preserving and controlled topology simplifying multiresolution isosurface extraction [J].
Gerstner, T ;
Pajarola, R .
VISUALIZATION 2000, PROCEEDINGS, 2000, :259-266
[16]   A SURVEY ON UNIVARIATE DATA INTERPOLATION AND APPROXIMATION BY SPLINES OF GIVEN SHAPE [J].
GREINER, H .
MATHEMATICAL AND COMPUTER MODELLING, 1991, 15 (10) :97-106
[17]  
Guskov Igor., 2001, P GRAPHICS INTERFACE, P19
[18]   Controlled topology simplification [J].
He, TS ;
Hong, LC ;
Varshney, A ;
Wang, SW .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1996, 2 (02) :171-184
[19]  
Hoppe H., 1996, Computer Graphics Proceedings. SIGGRAPH '96, P99, DOI 10.1145/237170.237216
[20]  
Hormann K, 1971, MORPHOMETRIE ERDOBER