The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells

被引:232
作者
Moule, Adam J. [1 ]
Bonekamp, Jorg B. [1 ]
Meerholz, Klaus [1 ]
机构
[1] Univ Cologne, Inst Phys Chem, D-50939 Cologne, Germany
关键词
D O I
10.1063/1.2360780
中图分类号
O59 [应用物理学];
学科分类号
摘要
At present, bulk heterojunction polymer solar cells are typically fabricated with an active layer thickness of between 80 and 100 nm. This active layer thickness has traditionally been chosen based on convenience and empirical results. However, a detailed study of the effects that active layer thickness has on the short circuit current and efficiency has not been performed for bulk heterojunction polymer solar cells so far. We demonstrate that the performance of these devices is highly dependent on the active layer thickness and, using a well established model for optical interference, we show that such effects are responsible for the variations in performance as a function of active layer thickness. We show that the ideal composition ratio of the donor and acceptor materials is not static, but depends on the active layer thickness in a predictable manner. A comparison is made between solar cells comprised of the donor materials regioregular poly(3-hexylthiophene) and poly(2-methoxy-5-(3('),7(')-dimethyloctyloxy)-p-phenylenevinylene) with the acceptor [6, 6]-phenyl C-61-butyric acid methyl ester to show that our results are not material specific and that high efficiency solar cells can be fabricated with active layer thickness greater than 100 nm for both material mixtures. Finally, a device with an active layer thickness of 225 nm is fabricated with a power efficiency of 3.7% under AM1.5 illumination at an intensity of 100 mW/cm(2). (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene [J].
Al-Ibrahim, M ;
Ambacher, O ;
Sensfuss, S ;
Gobsch, G .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[2]  
[Anonymous], 2003, ORGANIC PHOTOVOLTAIC
[3]   Effect of LiF/metal electrodes on the performance of plastic solar cells [J].
Brabec, CJ ;
Shaheen, SE ;
Winder, C ;
Sariciftci, NS ;
Denk, P .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1288-1290
[4]   Organic photovoltaic devices produced from conjugated polymer/methanofullerene bulk heterojunctions [J].
Brabec, CJ ;
Shaheen, SE ;
Fromherz, T ;
Padinger, F ;
Hummelen, JC ;
Dhanabalan, A ;
Janssen, RAJ ;
Sariciftci, NS .
SYNTHETIC METALS, 2001, 121 (1-3) :1517-1520
[5]   Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites [J].
Chirvase, D ;
Parisi, J ;
Hummelen, JC ;
Dyakonov, V .
NANOTECHNOLOGY, 2004, 15 (09) :1317-1323
[6]   General observation of n-type field-effect behaviour in organic semiconductors [J].
Chua, LL ;
Zaumseil, J ;
Chang, JF ;
Ou, ECW ;
Ho, PKH ;
Sirringhaus, H ;
Friend, RH .
NATURE, 2005, 434 (7030) :194-199
[7]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542
[8]   Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals [J].
Ginger, DS ;
Greenham, NC .
PHYSICAL REVIEW B, 1999, 59 (16) :10622-10629
[9]   Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells [J].
Hoppe, H ;
Niggemann, M ;
Winder, C ;
Kraut, J ;
Hiesgen, R ;
Hinsch, A ;
Meissner, D ;
Sariciftci, NS .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (10) :1005-1011
[10]   Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells [J].
Hoppe, H ;
Arnold, N ;
Sariciftci, NS ;
Meissner, D .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 80 (01) :105-113