Compensatory mutations, due to their ability to mask the deleterious effects of another mutation, are important for the adaptation and evolution of most organisms. Resistance to antibiotics, antivirals, antifungals, herbicides and insecticides is usually associated with a fitness cost. As a result of compensatory evolution, the initial fitness costs conferred by resistance mutations (or other deleterious mutations) can often be rapidly and efficiently reduced. Such compensatory evolution is potentially of importance for (i) the long-term persistence of drug resistance, (ii) reducing the rate of fitness loss associated with the accumulation of deleterious mutations in small asexual populations, and (iii) the evolution of complexity of cellular processes. (C) 2004 Elsevier SAS. All rights reserved.