Francisella tularensis Genes Required for Inhibition of the Neutrophil Respiratory Burst and Intramacrophage Growth Identified by Random Transposon Mutagenesis of Strain LVS

被引:58
作者
Schulert, Grant S. [1 ,2 ]
McCaffrey, Ramona L. [1 ,3 ,4 ]
Buchan, Blake W. [2 ]
Lindemann, Stephen R. [2 ]
Hollenback, Clayton [1 ,3 ]
Jones, Bradley D. [2 ]
Allen, Lee-Ann H. [1 ,2 ,3 ,4 ]
机构
[1] Univ Iowa, Inflammat Program, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Med, Iowa City, IA 52242 USA
[4] VA Med Ctr, Iowa City, IA 52242 USA
关键词
LIVE VACCINE STRAIN; NADPH OXIDASE; HUMAN MACROPHAGES; PATHOGENICITY ISLAND; HELICOBACTER-PYLORI; MURINE MACROPHAGES; ACID-PHOSPHATASE; MYCOBACTERIUM-TUBERCULOSIS; ALVEOLAR MACROPHAGES; INTRACELLULAR GROWTH;
D O I
10.1128/IAI.01318-08
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. We have shown that F. tularensis subspecies holarctica strain LVS prevents NADPH oxidase assembly and activation in human neutrophils, but how this is achieved is unclear. Herein, we used random transposon mutagenesis to identify LVS genes that affect neutrophil activation. Our initial screen identified carA, carB, and pyrB, which encode the small and large subunits of carbamoylphosphate synthase and aspartate carbamoyl transferase, respectively. These strains are uracil auxotrophs, and their growth was attenuated on cysteine heart agar augmented with sheep blood (CHAB) or in modified Mueller-Hinton broth. Phagocytosis of the uracil auxotrophic mutants triggered a respiratory burst in neutrophils, and ingested bacteria were killed and fragmented in phagosomes that contained superoxide. Conversely, phagocytosis did not trigger a respiratory burst in blood monocytes or monocyte-derived macrophages (MDM), and phagosomes containing wild-type or mutant bacteria lacked NADPH oxidase subunits. Nevertheless, the viability of mutant bacteria declined in MDM, and ultrastructural analysis revealed that phagosome egress was significantly inhibited despite synthesis of the virulence factor IglC. Other aspects of infection, such as interleukin-1 beta (IL-1 beta) and IL-8 secretion, were unaffected. The cultivation of carA, carB, or pyrB on uracil-supplemented CHAB was sufficient to prevent neutrophil activation and intramacrophage killing and supported escape from MDM phagosomes, but intracellular growth was not restored unless uracil was added to the tissue culture medium. Finally, all mutants tested grew normally in both HepG2 and J774A. 1 cells. Collectively, our data demonstrate that uracil auxotrophy has cell type-specific effects on the fate of Francisella bacteria.
引用
收藏
页码:1324 / 1336
页数:13
相关论文
共 80 条
[1]   PROTEIN-KINASE-C REGULATES MARCKS CYCLING BETWEEN THE PLASMA-MEMBRANE AND LYSOSOMES IN FIBROBLASTS [J].
ALLEN, LAH ;
ADEREM, A .
EMBO JOURNAL, 1995, 14 (06) :1109-1121
[2]   Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages [J].
Allen, LAH ;
Schlesinger, LS ;
Kang, B .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 191 (01) :115-127
[3]   Helicobacter pylori disrupts NADPH oxidase targeting in human neutrophils to induce extracellular superoxide release [J].
Allen, LAH ;
Beecher, BR ;
Lynch, JT ;
Rohner, OV ;
Wittine, LM .
JOURNAL OF IMMUNOLOGY, 2005, 174 (06) :3658-3667
[4]   To activate or not to activate:: distinct strategies used by Helicobacter pylori and Francisella tularensis to modulate the NADPH oxidase and survive in human neutrophils [J].
Allen, Lee-Ann H. ;
McCaffrey, Ramona L. .
IMMUNOLOGICAL REVIEWS, 2007, 219 :103-117
[5]   The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages [J].
Astarie-Dequeker, C ;
N'Diaye, EN ;
Le Cabec, V ;
Rittig, MG ;
Prandi, J ;
Maridonneau-Parini, I .
INFECTION AND IMMUNITY, 1999, 67 (02) :469-477
[6]   Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence [J].
Bakshi, Chandra Shekhar ;
Malik, Meenakshi ;
Regan, Kevin ;
Melendez, J. Andres ;
Metzger, Dennis W. ;
Pavlov, Vitaly M. ;
Sellati, Timothy J. .
JOURNAL OF BACTERIOLOGY, 2006, 188 (17) :6443-6448
[7]   Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages [J].
Balagopal, Ashwin ;
MacFarlane, Amanda Shearer ;
Mohapatra, Nrusingh ;
Soni, Shilpa ;
Gunn, John S. ;
Schlesinger, Larry S. .
INFECTION AND IMMUNITY, 2006, 74 (09) :5114-5125
[8]   Molecular and genetic basis of pathogenesis in Francisella tularensis [J].
Barker, Jeffrey R. ;
Klose, Karl E. .
FRANCISELLA TULARENSIS: BIOLOGY, PATHOGENICITY, EPIDEMIOLOGY, AND BIODEFENSE, 2007, 1105 :138-159
[9]  
Baron GS, 1999, FEMS MICROBIOL LETT, V176, P85, DOI 10.1111/j.1574-6968.1999.tb13646.x
[10]   MgIA and MgIB are required for the intramacrophage growth of Francisella novicida [J].
Baron, GS ;
Nano, FE .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :247-259