SIR repression of a yeast heat shock gene:: UAS and TATA footprints persist within heterochromatin

被引:37
作者
Sekinger, EA [1 ]
Gross, DS [1 ]
机构
[1] Louisiana State Univ, Med Ctr, Dept Biochem & Mol Biol, Shreveport, LA 71130 USA
关键词
heat shock factor; heterochromatin; mating-type silencers; TATA-binding protein; transcriptional silencing;
D O I
10.1093/emboj/18.24.7041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous work has suggested that products of the Saccharomyces cerevisiae Silent Information Regulator (SIR) genes form a complex with histones, nucleated by cis-acting silencers or telomeres, which represses transcription in a position-dependent but sequence-independent fashion. While it is generally thought that this Sir complex works through the establishment of heterochromatin, it is unclear how this structure blocks transcription while remaining fully permissive to other genetic processes such as recombination or integration. Here we examine the molecular determinants underlying the silencing of HSP82, a transcriptionally potent, stress-inducible gene. We find that HSP82 is efficiently silenced in a SIR-dependent fashion, but only when HMRE mating-type silencers are configured both 5' and 3' of the gene. Accompanying dominant repression are novel wrapped chromatin structures within both core and upstream promoter regions. Strikingly, DNase I footprints mapping to the binding sites for heat shock factor (HSF) and TATA-binding protein (TBP) are strengthened and broadened, while groove-specific interactions, as detected by dimethyl sulfate, are diminished. Our data are consistent with a model for SIR repression whereby transcriptional activators gain access to their cognate sites but are rendered unproductive by a co-existing heterochromatic complex.
引用
收藏
页码:7041 / 7055
页数:15
相关论文
共 68 条
[1]   REGULATION OF MATING-TYPE INFORMATION IN YEAST - NEGATIVE CONTROL REQUIRING SEQUENCES BOTH 5' AND 3' TO THE REGULATED REGION [J].
ABRAHAM, J ;
NASMYTH, KA ;
STRATHERN, JN ;
KLAR, AJS ;
HICKS, JB .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 176 (03) :307-331
[2]   Perinuclear localization of chromatin facilitates transcriptional silencing [J].
Andrulis, ED ;
Neiman, AM ;
Zappulla, DC ;
Sternglanz, R .
NATURE, 1998, 394 (6693) :592-595
[3]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[4]   Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA [J].
Apone, LM ;
Virbasius, CA ;
Holstege, FCP ;
Wang, J ;
Young, RA ;
Green, MR .
MOLECULAR CELL, 1998, 2 (05) :653-661
[5]   UASrpg can function as a heterochromatin boundary element in yeast [J].
Bi, X ;
Broach, JR .
GENES & DEVELOPMENT, 1999, 13 (09) :1089-1101
[6]   Cooperation at a distance between silencers and proto-silencers at the yeast HML locus [J].
Boscheron, C ;
Maillet, L ;
Marcand, S ;
TsaiPflugfelder, M ;
Gasser, SM ;
Gilson, E .
EMBO JOURNAL, 1996, 15 (09) :2184-2195
[7]   CHARACTERIZATION OF A SILENCER IN YEAST - A DNA-SEQUENCE WITH PROPERTIES OPPOSITE TO THOSE OF A TRANSCRIPTIONAL ENHANCER [J].
BRAND, AH ;
BREEDEN, L ;
ABRAHAM, J ;
STERNGLANZ, R ;
NASMYTH, K .
CELL, 1985, 41 (01) :41-48
[8]   Activator-dependent regulation of transcriptional pausing on nucleosomal templates [J].
Brown, SA ;
Imbalzano, AN ;
Kingston, RE .
GENES & DEVELOPMENT, 1996, 10 (12) :1479-1490
[9]   THE CARBOXY TERMINI OF SIR4 AND RAP1 AFFECT SIR3 LOCALIZATION - EVIDENCE FOR A MULTICOMPONENT COMPLEX REQUIRED FOR YEAST TELOMERIC SILENCING [J].
COCKELL, M ;
PALLADINO, F ;
LAROCHE, T ;
KYRION, G ;
LIU, C ;
LUSTIG, AJ ;
GASSER, SM .
JOURNAL OF CELL BIOLOGY, 1995, 129 (04) :909-924
[10]  
DeBeer NAP, 1999, EMBO J, V18, P3808