Activator-dependent regulation of transcriptional pausing on nucleosomal templates

被引:180
作者
Brown, SA
Imbalzano, AN
Kingston, RE
机构
[1] HARVARD UNIV,SCH MED,DEPT GENET,BOSTON,MA 02114
[2] MASSACHUSETTS GEN HOSP,DEPT MOLEC BIOL,BOSTON,MA 02114
关键词
transcriptional pausing; nucleosomes; hsp70; heat shock factor 1; hSW1/SNF complex; transcriptional activators;
D O I
10.1101/gad.10.12.1479
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Promoter-proximal pausing during transcriptional elongation is an important way of regulating many diverse genes, including human c-myc and c-fos, some HIV genes, and the Drosophila heat shock loci. To characterize the mechanisms that regulate pausing, we have established an in vitro system using the human hsp70 gene. We demonstrate that nucleosome formation increases by >100-fold the duration of a transcriptional pause on the human hsp70 gene in vitro at the same location as pausing is observed in vivo. Readthrough of this pause is increased by an activator that contains the human heat shock factor 1 (HSF1) transcriptional activation domains. Maximal effect of the activator requires that the system be supplemented with fractions that have hSWI/SNF activity, which has been shown previously to alter nucleosome structure. No significant readthrough is observed in the absence of activator, and neither the activator nor the hSWI/SNF fraction affected elongation on naked DNA; therefore, these results suggest that an activator can cause increased readthrough of promoter-proximal pausing by decreasing the inhibitory effect of nucleosomes on transcriptional elongation.
引用
收藏
页码:1479 / 1490
页数:12
相关论文
共 53 条
[1]  
ARIAS JA, 1989, J BIOL CHEM, V264, P3223
[2]   A MULTISUBUNIT COMPLEX CONTAINING THE SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, AND SNF6 GENE-PRODUCTS ISOLATED FROM YEAST [J].
CAIRNS, BR ;
KIM, YJ ;
SAYRE, MH ;
LAURENT, BC ;
KORNBERG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1950-1954
[3]   ACTIVATION OF YEAST POLYMERASE-II TRANSCRIPTION BY HERPESVIRUS VP16 AND GAL4 DERIVATIVES INVITRO [J].
CHASMAN, DI ;
LEATHERWOOD, J ;
CAREY, M ;
PTASHNE, M ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4746-4749
[4]   A NUCLEOSOME CORE IS TRANSFERRED OUT OF THE PATH OF A TRANSCRIBING POLYMERASE [J].
CLARK, DJ ;
FELSENFELD, G .
CELL, 1992, 71 (01) :11-22
[5]   STIMULATION OF GAL4 DERIVATIVE BINDING TO NUCLEOSOMAL DNA BY THE YEAST SWI/SNF COMPLEX [J].
COTE, J ;
QUINN, J ;
WORKMAN, JL ;
PETERSON, CL .
SCIENCE, 1994, 265 (5168) :53-60
[6]   MECHANISM OF TRANSCRIPTIONAL ANTIREPRESSION BY GAL4-VP16 [J].
CROSTON, GE ;
LAYBOURN, PJ ;
PARANJAPE, SM ;
KADONAGA, JT .
GENES & DEVELOPMENT, 1992, 6 (12A) :2270-2281
[7]   THE HIV-1 TAT PROTEIN - AN RNA SEQUENCE-SPECIFIC PROCESSIVITY FACTOR [J].
CULLEN, BR .
CELL, 1990, 63 (04) :655-657
[8]  
FLORES O, 1989, J BIOL CHEM, V264, P8913
[9]   PROMOTER MELTING AND TFIID COMPLEXES ON DROSOPHILA GENES INVIVO [J].
GIARDINA, C ;
PEREZRIBA, M ;
LIS, JT .
GENES & DEVELOPMENT, 1992, 6 (11) :2190-2200
[10]   RNA POLYMERASE-II INTERACTS WITH THE PROMOTER REGION OF THE NONINDUCED HSP70 GENE IN DROSOPHIL-MELANOGASTER CELLS [J].
GILMOUR, DS ;
LIS, JT .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (11) :3984-3989