Anomalous diffusion in nonlinear oscillators with multiplicative noise

被引:40
作者
Mallick, K [1 ]
Marcq, P
机构
[1] Ctr Etud Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Aix Marseille 1, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille 13, France
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.041113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The time-asymptotic behavior of undamped, nonlinear oscillators with a random frequency is investigated analytically and numerically. We find that averaged quantities of physical interest such as the oscillator's mechanical energy, root-mean-square position, and velocity grow algebraically with time. The scaling exponents and associated generalized diffusion constants are calculated when the oscillator's potential energy grows as a power of its position: U(x)similar tox(2n) for \x\-->infinity. Correlated noise yields anomalous diffusion exponents equal to half the value found for white noise.
引用
收藏
页数:14
相关论文
共 37 条
[1]  
Abramowitz M., 1966, HDB MATH FUNCTIONS
[2]  
[Anonymous], NOISE NONLINEAR DYNA
[3]   Stochastic resonance in vertical cavity surface emitting lasers [J].
Barbay, S ;
Giacomelli, G ;
Marin, F .
PHYSICAL REVIEW E, 2000, 61 (01) :157-166
[4]  
BERTHET R, 2002, PHYS REV LETT, V33, P557
[5]   Instability versus nonlinearity in certain nonautonomous oscillators: A critical dynamical transition driven by the initial energy [J].
Boschi, CD ;
Ferrari, L .
PHYSICAL REVIEW E, 2001, 63 (02)
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]   ENERGETIC STABILITY OF HARMONIC OSCILLATOR WITH RANDOM PARAMETRIC DRIVING [J].
BOURRET, R .
PHYSICA, 1971, 54 (04) :623-&
[8]   BROWNIAN MOTION OF HARMONIC OSCILLATOR WITH STOCHASTIC FREQUENCY [J].
BOURRET, RC ;
FRISCH, U ;
POUQUET, A .
PHYSICA, 1973, 65 (02) :303-320
[9]  
Byrd PF., 1954, Handbook of Elliptic Integrals for Engineers and Physicists
[10]   Adiabatic reduction near a bifurcation in stochastically modulated systems [J].
Drolet, F ;
Vinals, J .
PHYSICAL REVIEW E, 1998, 57 (05) :5036-5043