Conical diffraction in honeycomb lattices

被引:99
作者
Ablowitz, Mark J. [1 ]
Nixon, Sean D. [1 ]
Zhu, Yi [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
基金
美国国家科学基金会;
关键词
Dirac equation; geometrical theory of diffraction; honeycomb structures; light diffraction; Schrodinger equation;
D O I
10.1103/PhysRevA.79.053830
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conical diffraction in honeycomb lattices is analyzed. This phenomenon arises in nonlinear Schrodinger equations with honeycomb lattice potentials. In the tight-binding approximation the wave envelope is governed by a nonlinear classical Dirac equation. Numerical simulations show that the Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying mechanism for the existence of conical diffraction in honeycomb lattices.
引用
收藏
页数:6
相关论文
共 19 条
[1]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[2]   Symmetry breaking in honeycomb photonic lattices [J].
Bahat-Treidel, Omri ;
Peleg, Or ;
Sgev, Mordechai .
OPTICS LETTERS, 2008, 33 (19) :2251-2253
[3]   Conical diffraction: Hamilton's diabolical point at the heart of crystal optics [J].
Berry, M. V. ;
Jeffrey, M. R. .
PROGRESS IN OPTICS, VOL 50, 2007, 50 :13-50
[4]   Conical diffraction: observations and theory [J].
Berry, M. V. ;
Jeffrey, M. R. ;
Lunney, J. G. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2070) :1629-1642
[5]   Two-dimensional optical lattice solitons [J].
Efremidis, NK ;
Hudock, J ;
Christodoulides, DN ;
Fleischer, JW ;
Cohen, O ;
Segev, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[6]  
Fushchich W., 1997, SYMMETRIES EXACT SOL
[7]  
HADDAD LH, PHYSICA D IN PRESS
[8]   Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry [J].
Haldane, F. D. M. ;
Raghu, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[9]  
Hamilton W.R., 1837, T R IRISH ACAD, V17, P1
[10]   Conical refraction and nonlinearity [J].
Indik, R. A. ;
Newell, A. C. .
OPTICS EXPRESS, 2006, 14 (22) :10614-10620