Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix

被引:80
作者
Panorchan, Porntula
Lee, Jerry S. H.
Kole, Thomas P.
Tseng, Yiider
Wirtz, Denis
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Dept Mat Sci & Engn,Grad Training Program, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21218 USA
关键词
D O I
10.1529/biophysj.106.084988
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cell function is profoundly affected by the geometry of the extracellular environment con. ning the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix.
引用
收藏
页码:3499 / 3507
页数:9
相关论文
共 57 条
[1]   Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro [J].
Amerongen, GPV ;
Koolwijk, P ;
Versteilen, A ;
van Hinsbergh, VWM .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2003, 23 (02) :211-217
[2]   Motility and invasion are differentially modulated by Rho family GTPases [J].
Banyard, J ;
Anand-Apte, B ;
Symons, M ;
Zetter, BR .
ONCOGENE, 2000, 19 (04) :580-591
[3]   Ras and Rho GTPases: A family reunion [J].
Bar-Sagi, D ;
Hall, A .
CELL, 2000, 103 (02) :227-238
[4]  
Bell SE, 2001, J CELL SCI, V114, P2755
[5]   A mechanism for modulation of cellular responses to VEGF: Activation of the integrins [J].
Byzova, TV ;
Goldman, CK ;
Pampori, N ;
Thomas, KA ;
Bett, A ;
Shattil, SJ ;
Plow, EF .
MOLECULAR CELL, 2000, 6 (04) :851-860
[6]   Intravital imaging of cell movement in tumours [J].
Condeelis, J ;
Segall, JE .
NATURE REVIEWS CANCER, 2003, 3 (12) :921-930
[7]   Coupling of the nucleus and cytoplasm: role of the LINC complex [J].
Crisp, M ;
Liu, Q ;
Roux, K ;
Rattner, JB ;
Shanahan, C ;
Burke, B ;
Stahl, PD ;
Hodzic, D .
JOURNAL OF CELL BIOLOGY, 2006, 172 (01) :41-53
[8]   Cell interactions with three-dimensional matrices [J].
Cukierman, E ;
Pankov, R ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (05) :633-639
[9]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[10]   The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber [J].
Dahl, KN ;
Kahn, SM ;
Wilson, KL ;
Discher, DE .
JOURNAL OF CELL SCIENCE, 2004, 117 (20) :4779-4786