1. Pretreatment with ramiprilat, an angiotensin-converting enzyme (ACE) inhibitor, induced cardioprotection and its possible mechanism of action was investigated in guinea-pig Langendorff perfused heart. 2. Superoxide anion (. O-2(-)), produced by hypoxanthine and xanthine oxidase, and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical were used for triggering free radical injury in cardiac tissue. 3. 1,1-Diphenyl-2-picryl-hydrazyl and . O-2(-) significantly reduced left ventricular developed pressure (LVDP), +/-dP/dt(max), heart rate and coronary flow. Left ventricular end-diastolic pressure (LVEDP) was elevated and lactate dehydrogenase (LDH) leakage and the formation of thiobarbituric acid-reactive substances (TBARS) formation were significantly increased. 4. Pretreatment with ramiprilat induced cardioprotection against DPPH and . O-2(-) free radical injury. Cardiac functions (LVDP, LVEDP and +/-dP/dt(max)) were significantly improved. Both LDH and TBARS were reduced. 5. HOE 140 (a selective bradykinin B-2 receptor antagonist), calphostin C (a protein kinase C (PKC) inhibitor) and indomethacin (a cyclo-oxygenase inhibitor) all abolished the cardiac protective effect of ramiprilat, However, N-G-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, had no effect. 6. In conclusion, ramiprilat pretreatment induces cardioprotection against either DPPH or . O-2(-) free radical injury, The protective effect depends on activation of B-2 receptors and PKC. Prostaglandin synthesis is also involved.