Eigenstates of an operating quantum computer: hypersensitivity to static imperfections

被引:22
作者
Benenti, G
Casati, G
Montangero, S
Shepelyansky, DL
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Como, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sezione Milano, I-20133 Milan, Italy
[4] Univ Toulouse 3, UMR 5626 CNRS, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1140/epjd/e2002-00127-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the properties of eigenstates of an operating quantum computer which simulates the dynamical evolution in the regime of quantum chaos. Even if the quantum algorithm is polynomial in number of qubits n(q), it is shown that the ideal eigenstates become mixed and strongly modified by static imperfections above a certain threshold which drops exponentially with nq. Above this threshold the quantum eigenstate entropy grows linearly with n(q) but the computation remains reliable during a time scale which is polynomial in the imperfection strength and in n(q).
引用
收藏
页码:293 / 296
页数:4
相关论文
共 26 条
[21]  
Shor P. W., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P124, DOI 10.1109/SFCS.1994.365700
[22]   Limits to error correction in quantum chaos [J].
Silvestrov, PG ;
Schomerus, H ;
Beenakker, CWJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5192-5195
[23]   Quantum computing of quantum chaos and imperfection effects [J].
Song, PH ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (10) :2162-2165
[24]   Spin-spin interaction and spin squeezing in an optical lattice [J].
Sorensen, A ;
Molmer, K .
PHYSICAL REVIEW LETTERS, 1999, 83 (11) :2274-2277
[25]   Quantum computing [J].
Steane, A .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (02) :117-173
[26]  
Sushkov O. P., 1982, Soviet Physics - Uspekhi, V25, P1, DOI 10.1070/PU1982v025n01ABEH004491