Recurrence quantification analysis of the logistic equation with transients

被引:358
作者
Trulla, LL
Giuliani, A
Zbilut, JP
Webber, CL
机构
[1] LOYOLA UNIV,STRITCH SCH MED,DEPT PHYSIOL,MAYWOOD,IL 60153
[2] SIGMA TAU PHARMACEUT CO,INST RES SENESCENCE,I-00040 POMEZIA,ROME,ITALY
[3] RUSH MED COLL,DEPT PHYSIOL & MOL BIOPHYS,CHICAGO,IL 60612
关键词
recurrence; Lyapunov exponents; stationarity; chaos; complex systems; nonlinear dynamics;
D O I
10.1016/S0375-9601(96)00741-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recurrence quantification analysis (RQA) detects state changes in drifting dynamical systems without necessitating any a priori constraining mathematical assumptions. Study of the logistic equation with transients posits that RQA may be ideal for analyzing complex biological systems whose equations are unknown and whose dynamics are characteristically non-linear and non-stationary.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 14 条
[1]  
[Anonymous], RHYTHMS PHYSL SYSTEM
[2]   QUANTITATIVE MODELING AND BIOLOGY - THE MULTIVARIATE APPROACH [J].
BENIGNI, R ;
GIULIANI, A .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (05) :R1697-R1704
[3]  
COLLET P, 1980, ITERATED MAPS INTERV
[4]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[5]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[6]   STATE-DEPENDENT ASPECTS OF REGULATORY PHYSIOLOGY [J].
LYDIC, R .
FASEB JOURNAL, 1987, 1 (01) :6-15
[7]   LYAPUNOV EXPONENTS OF THE LOGISTIC MAP WITH PERIODIC FORCING [J].
MARKUS, M ;
HESS, B .
COMPUTERS & GRAPHICS, 1989, 13 (04) :553-558
[8]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[9]   Basins of attraction [J].
Nusse, HE ;
Yorke, JA .
SCIENCE, 1996, 271 (5254) :1376-1380
[10]  
SHAW R, 1981, Z NATURFORSCH A, V36, P80