A smart microrobot on chip: Design, identification, and control

被引:48
作者
Ferreira, A [1 ]
Agnus, J
Chaillet, N
Breguet, JM
机构
[1] Lab Vis & Robot, F-18000 Bourges, France
[2] Lab Automat Besancon, F-25000 Besancon, France
[3] Swiss Fed Inst Technol, Inst Prod & Robot, CH-1015 Lausanne, Switzerland
关键词
hysteresis; microgripper; micromanipulation; microrobotics; modeling; piezoactuators; position/force control;
D O I
10.1109/TMECH.2004.834646
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the microrobot on chip (MOC) concept which corresponds to the development of compact, inexpensive, and easily "plug and use" microrobotic components (as it is the usual case with electronic chips). A first prototype of a 6 degrees-of-freedom (DOF) piezoelectric micromanipulator MOC (MMOC) illustrates this concept: one scanning piezostage can move the gripper in x - y axes and the piezoelectric microgripper itself has two y - z DOF per finger. An embedded optical fiber connected to a CCD camera and a force self-sensing system allowing force feedback. The first prototype of MMOC is electrically and mechanically connected to a smartcard reader. In order to be able to manipulate safely and accurately micro-objects, a force/position closed-loop controller is proposed taking into account the static and dynamic behavior of the microgripper. Hysteresis compensation is obtained through Preisach model and then an adaptive inverse control method is employed for open-loop control strategy. Numerical and experimental results which validate the theoretical developments are presented.
引用
收藏
页码:508 / 519
页数:12
相关论文
共 29 条
[1]   Description and performances of a four-degrees-of-freedom piezoelectric gripper [J].
Agnus, J ;
De Lit, P ;
Clévy, C ;
Chaillet, N .
PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON ASSEMBLY AND TASK PLANNING (ISATP2003), 2003, :66-71
[2]  
AGNUS J, 2002, P 3 INT WORKSH MICR, P101
[3]  
ANDERSON EH, 1992, SELF SENSING PIEZOEL, P2146
[4]   Integrated microendeffector for micromanipulation [J].
Arai, F ;
Andou, D ;
Nonoda, Y ;
Fukuda, T ;
Iwata, H ;
Itoigawa, K .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 1998, 3 (01) :17-23
[5]   Towards a force-controlled microgripper for assembling biomedical microdevices [J].
Carrozza, MC ;
Eisinberg, A ;
Menciassi, A ;
Campolo, D ;
Micera, S ;
Dario, P .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2000, 10 (02) :271-276
[6]  
DOCH JJ, 1992, J INTEL MAT SYST STR, V3, P166
[7]   Automatic control system of a microrobot-based microassembly station using computer vision [J].
Fatikow, S ;
Buerkle, A ;
Seyfried, J .
MICROROBOTICS AND MICROASSEMBLY, 1999, 3834 :11-22
[8]   Automatic microassembly system assisted by vision servoing and virtual reality [J].
Ferreira, A ;
Cassier, C ;
Hirai, S .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2004, 9 (02) :321-333
[9]  
GAUGEL T, 2002, P 3 INT WORKSH MICR, P5
[10]   The microgripper construction kit [J].
Gengenbach, U ;
Hofmann, A ;
Engelhardt, F ;
Scharnowell, R ;
Köhler, B .
MICROROBOTICS AND MICROASSEMBLY III, 2001, 4568 :24-31