Inhibition of reverse transcription in vivo by elevated manganese ion concentration

被引:60
作者
Bolton, EC
Mildvan, AS
Boeke, JD
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
关键词
D O I
10.1016/S1097-2765(02)00495-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in PMR1, a yeast gene encoding a calcium/manganese exporter, dramatically decrease Ty1 retrotransposition. Ty1 cDNA is reduced in pmr1 mutant cells, despite normal levels of Ty1 RNA and proteins. The transposition defect results from Mn2+ accumulation that inhibits reverse transcription. Cytoplasmic accumulation of Mn2+ in pmr1 cells may directly affect reverse transcriptase (RT) activity. Trace amounts of Mn2+ potently inhibit Ty1 RT and HIV-1 RT in vitro when the preferred cation, Mg2+, is present. Both Mn2+ and Mg2+ alone activate Ty1 RT cooperatively with Hill coefficients of 2, providing kinetic evidence for a dual divalent cation requirement at the RT active site. We propose that occupancy of the B site is the major determinant of catalytic activity and that Mn2+ at this site greatly reduces catalytic activity.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 49 条