Propagating quantum walks:: the origin of interference structures

被引:33
作者
Knight, PL
Roldán, E
Sipe, JE
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2AZ, England
[2] Univ Valencia, Dept Opt, E-46100 Burjassot, Spain
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
关键词
D O I
10.1080/09500340410001669390
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyse the solution of the coined quantum walk on a line. First, we derive the full solution, for arbitrary unitary transformations, by using a new approach based on the four 'walk fields' which we show determine the dynamics. The particular way of deriving the solution allows a rigorous derivation of a long wavelength approximation. This long wavelength approximation is useful as it provides an approximate analytical expression that captures the basics of the quantum walk and allows us to gain insight into the physics of the process.
引用
收藏
页码:1761 / 1777
页数:17
相关论文
共 27 条
[1]  
ABRAMOWITZ M, 1970, HDB MATH FUNCTIONS, P446
[2]  
Agrawal G., 2001, Nonlinear Fibers Optics, V3rd
[3]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[4]  
BACH E, 2002, QUANTPH0207008
[5]   WEYL, DIRAC, AND MAXWELL EQUATIONS ON A LATTICE AS UNITARY CELLULAR-AUTOMATA [J].
BIALYNICKIBIRULA, I .
PHYSICAL REVIEW D, 1994, 49 (12) :6920-6927
[6]  
BOHOSIAN BM, 1998, PHYS REV E, V57, P54
[7]   Three routes to the exact asymptotics for the one-dimensional quantum walk [J].
Carteret, HA ;
Ismail, MEH ;
Richmond, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (33) :8775-8795
[8]  
Childs A. M., 2003, P 35 ANN ACM S THEOR, P59, DOI DOI 10.1145/780542.780552
[9]   Quantum computation and decision trees [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 58 (02) :915-928
[10]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328